
ALGEBRAIC GROUP-VARIETIES 

IACOPO BARSOTTI 

1. Definitions and preliminaries. Let k be an algebraically closed 
field, and let S be an w-dimensional projective space over k; the 
points of S are the ordered sets {£0, • • • , £n} of elements of k, with 
the exception of the set {0, • • • , 0 } , and where two sets {£}, {£'}are 
identified if Çi — pç. for each i, and for some p£&. An (algebraic) 
variety over k is the set V of all the points {£} whose coordinates 
£o, • • • , Çn satisfy a given finite set of homogeneous algebraic equa
tions with coefficients in k; V is irreducible if it is not the join of two 
nonempty varieties, neither of which contains the other. The restric
tion to algebraically closed fields is not strictly necessary, but is very 
convenient for expository purposes, and will be kept in force through
out this address. The case in which k is the complex field will be 
referred to as the classical case. 

The (cartesian) product VXF of two varieties is defined in the 
usual way; it is a (pseudo-) variety embedded in a biprojective space, 
but it is also birationally equivalent (see below), in a one-to-one man
ner, to a variety (the Segre product) in the previous sense. A cycle on 
V is an element of the free abelian group generated by the subvarieties 
of V; a cycle is effective if all its (irreducible) components appear in it 
with a positive coefficient (multiplicity). If V, F are irreducible, an 
effective cycle D o n VXF is also called an algebraic correspondence 
between F and V\ to a point PÇ.F corresponds the variety D [P] con
sisting of all the ( ? £ V such that PXQÇzD; if P is generic (that is, if 
it does not belong to a certain proper subvariety of F), and if all the 
components of D have the same dimension and operate on the whole 
F, a certain multiplicity e(U) can be attached to each component U 
of D[P]; the cycle J2u e(U)U on F is then denoted by D{P) (see 
[ l ] and [2] in the bibliography at the end of the paper). 

The algebraic correspondence D between F and V is called a 
rational mapping of F into V if D{P} is a point, with multiplicity 1, 
of V for a generic P(~zF; if D is a rational mapping of F into V and 
also of V into F, it is called a birational transformation, and F, V are 
then said to be birationally equivalent [31 ]. These definitions, and this 
language, are used in [ l ; 2; 3; 4; 5; 6; 7; 8; 31; 32]; quite different, 
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but substantially equivalent, language is used by Weil and his school 
in [12; 13; 18; 19; 20; 26; 29; 30]. 

The idea of algebraic correspondences is not limited to corre
spondences between varieties: it can be extended, with definite ad
vantages, to algebraic correspondences between a field and a variety; 
this is done in [ l ; 2] , and systematically used in al lmy subsequent 
work. 

In order to introduce the notion of group-variety, we shall first 
make the following convention: if F is a variety, we shall denote by 
Fj, F2, • - • a set of "copies" of V; if x is any entity related to F, 
%i shall mean the copy of x which is similarly related to V{. Let then 
V be an irreducible variety over k, and let Vi, F2, Vz be copies of V; 
a rational mapping of Vi X F2 into Vz is called a law of composition on 
V; if {P, Q} is a generic pair of points of V, and if P 3 = £> [Pi X (?2 ], 
we shall write R = PQ; the law D is called a normal law [30 ] if it is 
also a rational mapping of F 2 X F 3 into Vi, and of VzXVi into F2, 
and if in addition it is associative, that is, if (PQ)R = P(QR) for any 
generic set {P, Q, R} of points of V. We say that F is a group-
variety with the law of composition Dy if D is a normal law, and if F 
contains a proper sub variety W such that V—W (set-theoretical 
difference) is a group with the law of multiplication prescribed by D ; 
W is called the degeneration locus of F. I t is easily verified that the 
group V—W can be interpreted, in more than one way, as a group of 
birational transformations of F, or of automorphisms of k(V) ( = field 
of the rational functions on F) over k. When this is done, in a given 
way, o-p shall denote the automorphism related to PS V—W; it 
satisfies the relation <rPQ = PQ for Q G V- W. 

I shall not insist on the obvious definitions of direct product VXF 
of two group-varieties, of group-subvariety, and of invariant group-
sub variety; it must be noted, however, that a group-subvariety of a 
group-variety need not be irreducible. An immediate example of 
group-variety is given by an w2-dimensional projective space G: if the 
nonhomogeneous coordinates of the points of G are arrayed in a ma
trix of order n, the matrix-product establishes a law of composition 
on G, which turns G into a group-variety whose degeneration locus 
consists of the hyperplane at infinity, and of the subvariety of the 
points represented by matrices with vanishing determinant. This 
group-variety G, and its irreducible group-subvarieties, form an im
portant class of group-varieties, which I have called Vessiot varieties, 
for the role they play in the algebraic Picard-Vessiot theory of differ
ential equations [16; 17]. Vessiot varieties are usually noncommuta-
tive, but the following special commutative cases are noteworthy: 
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(1) vector varieties) these are isomorphic (that is, birationally equiva
lent as varieties, and isomorphic as groups) to direct products of 
finitely many straight lines, the law of composition on each straight 
line being given by the addition of the abscissae; (2) logarithmic vari
eties] these are isomorphic to direct products of finitely many straight 
lines, the law of composition on each straight line being given by the 
multiplication of the abscissae; (3) periodic varieties; these are com
mutative group-varieties G having the property that Pe = E (identity) 
for each nondegenerate PQG, and for a suitable positive integer e, 
independent of P ; it is proved in [5 ] that periodic varieties exist only 
over fields of characteristic p>0, in which case the smallest possible 
e is a power of p; the vector varieties over a field of characteristic 
p > 0 are all and only the periodic varieties of period p [5 ]. I t is rather 
easy to prove that vector varieties and logarithmic varieties are 
Vessiot varieties; in [16; 17] it is also proved that any commutative 
Vessiot variety is the direct product of a logarithmic variety and a 
vector, or a periodic, variety, depending on whether k has zero or 
positive characteristic. The proof of the fact that every periodic vari
ety is a Vessiot variety is given in [6] ; an announcement of the same 
fact is contained in [26]. 

Vector varieties, logarithmic varieties, and periodic varieties share 
the property of being rational, that is, birationally equivalent to a 
projective space; any Vessiot variety over a field of characteristic 
zero has the same property (result unpublished) j 1 most probably, the 
same is true for any characteristic, but no proof of this fact is avail
able yet. 

All Vessiot varieties have a nonempty degeneration locus; the last, 
and most important, example of group-varieties is given by the 
abelian varieties, which are, by definition, the group-varieties with 
empty degeneration locus; they are necessarily commutative [30]. 

2. Historical note anà statement of the problems. The study of 
problems related to, or stemming from properties of group-varieties, 
mainly in the classical case, has formed, and still forms, the historical 
center at which several branches of mathematics meet. Abelian vari
eties originate in the celebrated problem of the inversion of what we 
now call the abelian integrals of the first kind on an algebraic curve 
of genus g è l ; it now appears [27 ] that other types of commutative 
group-varieties originate in the problem of the inversion of integrals 

1 Added February, 1956. This result was published at about the same time 
this address was delivered; see C. Chevalley, On algebraic group-varieties, J. Math. 
Soc. Japan vol. 6 (1954) p. 303. 
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of the second and third kind (see §§3 and 4). For g = l, the solution 
of the first problem is expressed in the theory of elliptic functions; 
for g > 1, the beautiful theory of abelian functions (or meromorphic 
functions of g complex variables with 2g periods) gives a transcen
dental tool of primary importance. The deeper results in this theory 
were obtained by transcendental and topological means, of which 
Conforto has given, in [14], a modern and rigorous account. The 
translation and generalization of the theory of abelian varieties to the 
abstract case (arbitrary k) has been made possible by the pioneering 
work of Zariski [31; 32], and by the revolutionary new tools which 
he forged in the arithmetical method in algebraic geometry; the actual 
reconstruction, within this framework, of the theory of abelian vari
eties, has been beautifully accomplished by Weil in a true master
piece of modern mathematics [30 ]. 

Already in the classical works a basic problem manifests itself, al
though at times it is blurred by the general lack of rigor: it is not 
difficult to prove that, by means of abelian functions, an analytic 
and generally one-to-one correspondence can be established between 
a toroid (or the parallelotope of the periods) and an algebraic variety 
V; this, of course, establishes a normal law on V, reflecting the addi
tion of the arguments of the abelian functions. The problem is to find 
whether V can be selected in such a way that the correspondence is 
strictly one-to-one, in which case V will be a group-variety. No 
rigorous solution to this problem can be found in the classical litera
ture, although [14] contains a clear statement of it, and some useful 
hints concerning its solution. When the theory of group-varieties is 
put on a purely algebraic basis, the necessity of finding a solution to 
the analogous problem becomes even more acute, so acute in fact 
that Weil has developed, in [29], a new tool (the "abstract varieties") 
which allows him to by-pass the problem itself, at the cost of aban
doning the geometrical interpretation of varieties as subsets of a pro
jective space. Shortly after, however, the problem was completely 
solved in [4] ; actually, when only abelian varieties are concerned, the 
solution is surprisingly simple, and a particular case of it is also given 
in [13].2 

Before closing the subject of abelian varieties, it should be noted 
that through the theory of Riemann matrices in the classical case, or 
the ring of endomorphisms of an abelian variety in the abstract case, 
the theory of abelian varieties provides a powerful tool for the solu
tion of difficult questions of analytic number theory. 

2 A proof for the case of abelian varieties appears also in: [20]. In the classical 
case, and for abelian varieties only, the result is also contained in: K. Kodaira, On 
Ktihler varieties of restricted type, Ann. of Math. vol. 60 (1954) p. 28. 
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Both abelian varieties and Vessiot varieties fit naturally (in the 
classical case) in the theory of Lie groups, but Vessiot varieties seem 
to have received more attention by the specialists on Lie groups; of 
course, the much discussed "classical groups" are, or are related to, 
very particular cases of Vessiot varieties. However, not much atten
tion seems to have been paid to those groups of matrices which are 
algebraic, and to their algebraic nature, in spite of the fact that the 
theory of invariants is an algebraic theory. The only recent and 
rigorous works on the subject seem to be [lO], [ l6]and [17]; while the 
precise scope and purpose of [lO] is still not too clear to me, [ló] and 
[17] contain abundant results on Vessiot varieties, as well as on the 
more immediate purpose of their author, namely the algebraic and 
rigorous reconstruction of the Picard-Vessiot theory of differential 
equations. 

The main problem on Vessiot varieties is their classification and 
construction; in the classical case, both are achieved rather neatly 
by shifting the emphasis from the varieties to their Lie algebras ; this 
artifice does not work in characteristic p>0, and [lO] offers convinc
ing proof of this statement. The reason for this failure is to be sought, 
in my opinion, in the fact that the coefficients of the Taylor expansion 
of a function over a field of positive characteristic are not obtainable 
by iterated derivations. I t is also my opinion that a method dealing 
with these coefficients directly, rather than with the set of the deriva
tions, would completely reestablish the analogy with the classical 
case;8 a modest example of this is given in §6 of [5]. 

We now come to the main problem on general group-varieties, 
namely their classification and construction (or structure). As usual 
in mathematics, this problem is to be considered solved when its 
solution is made to depend on problems which, in the logical or his
torical development of the theory, are parts of a "previous theory". 
Thus, abelian varieties and Vessiot varieties must be considered as 
"known" when investigating the structure of general group-varieties. 
I t is quite natural to investigate first the structure of commutative 
group-varieties, and later the structure of general group-varieties; I 
shall say immediately that the second, more general problem has 
been completely neglected until now, except in so far as noncommuta-
tive group-varieties fit into the general theory of Lie groups. The 
first, more restricted problem, has fared a little better, since com
mutative group-varieties lend themselves, in the classical case, to be 
studied by means of quasi-abelian functions, that is, meromorphic 

3 This program has been realized, for "formal Lie groups", in: J. Dieudonné, 
Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p>0, Comment. 
Math. Helv. vol. 28 (1954) p. 87. 
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functions of g complex variables, which satisfy an addition theorem 
in the sense of Weierstrass (and which consequently have M = 2g pe
riods). An extensive literature on this subject is to be found in [27]. 
[27] and [28] are the most recent contributions to the subject along 
classical lines, and apparently the only classical contributions with a 
distinctly geometrical outlook (although the author skilfully avails 
himself of transcendental tools). I t is unfortunate that [27] partakes 
of those shortcomings which for a few decades stifled serious progress 
in algebraic geometry, namely the lack of clear definitions and of 
rigorous proofs; for instance, it seems to me that group-varieties are 
never even taken into consideration in [27], the subject always being 
varieties with a commutative normal law. 

The general method followed by Severi in [27] can certainly be 
made logically rigorous, translated into algebraic language, and gen
eralized to arbitrary characteristic. This translation and generaliza
tion has been undertaken in [24; 25; 26], and it is my understanding 
that it has now born the expected fruit. 

3. Preparatory and structural results. I will now briefly present 
the main results of my studies on the subject in the course of the last 
three years. First of all, the free interchange of "varieties with a nor
mal law of composition" and "group-varieties" is made possible by the 
following result [4]: 

(1) THEOREM. Let V be an (absolutely) irreducible variety over the 
(not necessarily algebraically closed) field k, and let D be a normal law 
of composition on V. There exists a variety G over k, birationally equiv
alent to V, such that G, with the law of composition induced by D, is a 
group-variety. G is unique but for isomorphisms. 

The most immediate application of (1) is to the homomorphism 
theorems [5; 12]; a homomorphism a of a group-variety G into a 
group-variety Gf is a rational mapping of G into Gf which is also, as 
far as nondegenerate points are concerned, a group-homomorphism ; 
the kernel of a is the smallest subvariety of G which contains all the 
nondegenerate points of G which map on the identity of G'. The 
homomorphism a is separable if a{P} has no component of multi
plicity > 1 for a generic P<EG'. I will not state here the three homo
morphism theorems, which are analogous to those of group-theory; 
the only difference lies in the fact that there may exist homomor-
phisms (purely inseparable) whose kernel is the identity, but which 
nonetheless are not isomorphisms. This is not the case, however, if 
the characteristic of k is zero. 
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All the structural theorems for commutative group-varieties de
pend on two preparatory results [5], the first of which reads: 

(2) LEMMA. A nonabelian commutative group-variety of dimension > 1 
has some positive dimensional proper group-subvariety. 

The proof of this result is approximately as follows : if G is the given 
variety, and F its nonempty degeneration locus, and if dim G = n>l, 
let X be an (n — 1)-dimensional irreducible subvariety of G. If there 
exist infinitely many PÇ£G — F such that o> leaves X invariant, they 
lie on the desired group-subvariety. If not, o-pX depends on P , and 
when P approaches a suitable point of F, <rpX approaches a cycle Y 
which does have the previous property. Of course, "approaching" is 
replaced by a suitable algebraic notion. 

Before stating the second preparatory result, we must introduce, 
in analogy to group-theory, the concept of factor set. Let G, V be 
commutative group-varieties over k, and let Gi, G2 be copies of G. 
Let 7 be a rational mapping of G1XG2 into V, such that the relations 
(y[PiXQ2R2])(y[QiXR2]) = (y[PiQiXR2])(y[PiXQ2])andy[P1XQ2] 
~y[QiXP2] are satisfied for a generic set {P, Ç, R} of points of G; 
assume, moreover, 7 [£1X^2] to be a nondegenerate point of F, if 
E is the identity of G. Then 7 is called a factor set of G into V. The set 
of all such 7*s is denoted by T(G, V), and becomes a commutative 
group when a "natural" law of multiplication is introduced. The fac
tor set 7 is associate to the identity, or 7 ^ 1 , if there exists a rational 
mapping /x of G into F such that y[PiXQ%] = ( M [ ^ ] ) ( M [ Ö ] ) ( M [ ^ Ö ] ) ~ I 

for generic P , QÇLG. The set T0(G, V) of the y~l is a subgroup of 
T(G, V). If 7 £ r ( G , V), we can establish a normal law of composition 
D on the cartesian product GXV by setting (PXQ)(RXS) 
= PRXQSy[PiXR2], where P , R<EG, and (?, S<EV. The group-
variety determined by G X F and D according to (1) is called a 
crossed product of G and V, and denoted by {G, V, y} ; it is isomorphic 
to the direct product GX VU and only if 7 £ r 0 ( G , V). Now, the result 
which we have in mind (and whose proof rests essentially on Lüroth's 
theorem) is the following [5 ] : 

(3) LEMMA. Let G be a commutative group-variety over k, and let Vbea 
rational 1-dimensional irreducible group-subvariety of G {that is} a 
straight line, either additive or multiplicative) ; then G is a crossed prod
uct of GIV and V. 

Here, G/V is the image of G in the homomorphism whose kernel is 
V. From (2), (3), and from a result of [30 ], stating that any rational 
mapping of a rational variety R into an abelian variety maps the 
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whole R onto a point, the complete structural theorems for com
mutative group-varieties follow, namely [S]: 

(4) THEOREM. A commutative group-variety G over k contains a unique 
maximal irreducible rational group-subvariety V; A—G/V is abelian, 
and G is a crossed product of A and V. 

(5) THEOREM. A commutative rational group-variety G over k con
tains a unique maximal irreducible logarithmic subvariety L, and a 
unique maximal irreducible vector {if k has characteristic zero) or peri
odic (if k has positive characteristic) subvariety V; moreover, G is iso
morphic to the direct product LXV. 

(6) THEOREM. A periodic group-variety of dimension n + 1 over k is 
the crossed product of a periodic group-variety of dimension n, and of a 
1-dimensional vector variety. 

The case of noncommutative group-varieties lends itself to an 
attack from two directions, which combine to give a rather strong 
result, although not as strong as (4). The first of these (described in 
[5]) is brought about by considering two isomorphic general points 
X, F of a group-variety G over k (so that X> Y will have coordinates 
in a suitable extension of k), and by expanding the coordinates of 
X"1 YX in series of powers of the coordinates of F. The coefficients 
of these power series are rational functions of the coordinates of X, 
and can be taken as coordinates of a general point of a new variety V. 
I t turns out that if the series are truncated at a suitable point, F is a 
Vessiot variety, image of G in a homomorphism whose kernel is the 
center C of G. If the characteristic of k is zero, two concomitant facts 
concur to make the picture particularly simple, namely: (1) the series 
can be truncated after the first powers, and (2) V is necessarily iso
morphic to G/C, and can accordingly be called the adjoint variety. 
Both properties are, substantially, consequences of the applicability 
of the theory of Lie algebras. If the characteristic of k is positive, 
neither property is necessarily true, and examples of their failure are 
readily constructed. In this case, V is called the stem of G ; it remains 
true, however, that G/C is a Vessiot variety, but this is a consequence 
of the second method of attack [ô]. 

The other line of attack (described in [ó]) involves the considera
tion of the set of the elements x of k(G) (rational functions on G) 
which have no poles on G outside the degeneration locus; such ele
ments form a ring, whose field of quotients is also the field of rational 
functions on a Vessiot variety F, homomorphic image of G in a 
separable homomorphism a. In the language of the theory of group 
representations, a is a maximal representation of G. Various conse-
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quences can be drawn from these two results, of which the most im
portant are [6]: 

(7) THEOREM. 4 A group-variety G over k contains a unique maximal 
Vessiot subvariety H; H is invariant in G, and G/H is abelian. 

(8) COROLLARY. Every rational group-variety is a Vessiot variety. 

Result (7) is not as strong as the analogous result for commutative 
group-varieties, namely (4). If (8) could be inverted, it would be pos
sible to refine (7) in a manner similar to (4) ; in any case, the following 
generalization of two results of [30 ] is helpful [5]: 

(9) THEOREM. Let A be an abelian group-subvariety of a group-
variety G; then A is a subvariety of the center of G, and G contains an 
invariant irreducible group-subvariety B such that the intersection AC\B 
is a finite set of points. 

4. Factor sets. Result (4) gives complete information on all the 
possible G if the structure of V{A, V)/Y0(A, V) is known. The study 
of this group forms the object of §4 of [5], of [7], and, in part, of 
[8]. I t can be easily shown that it is sufficient to study the structure of 
Y {A y V)/T0(A, V) for the simple case in which V is 1-dimensional, 
and either logarithmic or a vector variety. 

In the classical case, let us denote by £>, $)e, 3)i, £>2 the additive 
groups of, respectively, the closed differentials on A with integral 
residues,5 the exact differentials on A, the closed differentials of the 
first kind on A, and the closed differentials of the second kind on A ; 
let £>j denote the additive group of the differentials of the type dx/x, 
for 0?*xC£k(A). Then it can be proved by transcendental means 
(and is implicitly stated in [27]) that if F is a 1-dimensional vector 
variety, T(A, V)/T0(A, V) is isomorphic to $h/&i + 2>e, while 
T(A, V)/T0(A, V) is isomorphic to £>/3D2+£>z if F i s a 1-dimensional 
logarithmic variety. In the first case, it is also known, by transcen
dental and topological means, that 3D2/3>L+£>e is a ^-module of order 
w = dim A, so that the same is true of T(A, V)/T0(A, V). Now, this 
has been proved in [7], by algebraic means only, for any k of charac
teristic zero, and leads to the following result: 

(10) THEOREM. Let A be an n-dimensional abelian variety over the 
field k of characteristic zero ; let Vbea 1-dimensional vector variety over k. 

4 Added May, 1956. I have been informed that a proof of this result, valid for the 
case of characteristic zero, was announced by C. Chevalley in the summer of 1953. 

6 This condition concerning the residues was erroneously left unmentioned in §7 of 
[5]. 
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Then Y {A, V)/TQ(A, V) is a k-module of dimension n, isomorphic to 

The core of the algebraic proof of (10) lies in the fact that £>i is the 
set of all the invariant differentials on A (invariant under the trans
formations crp for P £ - 4 ) , while £>2 is the set of all the semi-invariant 
closed differentials on A, namely of those closed differentials œ such 
that (Tpco—co££)e for any P £ i . 

The second case, or the case in which Fis logarithmic, could proba
bly also be treated by means of the differentials ; but there is a more 
natural and geometrical manner, which I shall explain after introduc
ing a few new concepts. 

Quite in general, let F be a normal [3l] w-dimensional irreducible 
variety over k, and let Z(F) be the group of the (n — 1)-dimensional 
cycles on F. An element ^GZ(F) is algebraically equivalent to zero, or 
g«0 , if there exist an irreducible variety F over k, an algebraic cor
respondence D between F and F, and two points P , Q of F, such that 
l=D{p} — D{Q}\ if F can be selected to be rational, and D can be 
selected so that it operates on the whole F, % is said to be linearly 
equivalent to zero, in symbols 3~0. Finally, $ is arithmetically equivalent 
to zero, or $ = 0, if the intersection [3] (gP\C, F) of % with any curve C 
of F has order zero whenever it exists. The sets of, respectively, the 
cycles a~0, j « 0 , g==0 will be denoted by £ ( F ) , 6 (F ) , d(V) respec
tively; they are subgroups of Z(F) , and satisfy the inclusion £ ( F ) 
£ C ( F ) C a ( F ) C Z ( F ) . The following relations have been proved 
within the framework of classical algebraic geometry, and by the 
combined efforts of, mainly, Picard, Castelnuovo, Poincaré, Enriques, 
Severi and Lefschetz: (a) Z(F)/Ct(F) is a finite free module over the 
ring of integers; (b) Ct(F)/C(F) is a finite group, whose order is the 
torsion of V; (c) 6(F)/<£(F) is isomorphic, as a group, and "bira-
tionally" so, in a well determined way, to an abelian variety, the 
Picard variety of V. A mixture of properties (a) and (b), namely the 
fact that Z (F) /C(F) is a finite module over the ring of integers, has 
been rigorously reestablished, by algebraic means and for any char
acteristic, by Néron in [22]; property (c) has also been reestablished 
under the same conditions in [18] and [19] by Matsusaka, or in [23] 
(also in an unpublished work by the author). In the case in which 
V=A = a n abelian variety, property (a) can be proved independently 
[8]; property (b) follows from the fact that (by (19) of [8]) every 
element of &(A)/<5(A) has a finite, bounded, period, and that con
sequently (by Proposition 4 of [22]) is itself finite. As a matter of 
fact, the quoted results imply that Q(A)~Q,(A) if k has character
istic zero, and that Q(A)/Q(A) has an order which is a power of the 
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characteristic p of k if p>0. Finally, as far as property (c) is con
cerned, it is proved in [8] that the Picard variety of A is isogenous to 
A, namely, has the same dimension of A and is a homomorphic image 
of A. I t must be noted also that if 3<GZ(^4), then $s=0 if and only if 
$ is linearly equivalent to each <TP% for P Ç 4 ; this definition of the 
equivalence^is profitably used in [30], and its identity with arith
metic equivalence is proved in [8].6 

This being established, we have [5; 8 ] : 

(11) THEOREM. Let A be an abelian variety over the field k of character-
istic p; let V be a 1-dimensional logarithmic variety over k. Then 
T(A, V)/T0(A, V) is isomorphic to d(A)/£(A); this, in turn, is iso
morphic to the group of the points of the Picard variety B of A if p = 0. 
If p>0, &(A)/£(A) contains a subgroup isomorphic to B, and having 
in d(A)/£(A) an index which is a (finite) power of p. 

The only remaining case is that in which k has positive character
istic, and F is a vector variety. Work on this case is not completed, 
but what there is would indicate that a result similar to (10) holds 
true. The method of proof, however, is completely different, and is 
based on the consideration of the ^-module £>iPi£>e, which in this 
case is not necessarily zero-dimensional; the same method, through 
the consideration of the group £>iP\£)j, throws light on the value of 
the torsion of A, or of the index mentioned in ( l l ) . 7 

BIBLIOGRAPHY 

1. I. Barsotti, Algebraic correspondences between algebraic varieties, Ann. of Math, 
vol. 52 (1950) p. 427; see also Errata, ibid. vol. 53 (1951) p. 587. 

2. , Local properties of algebraic correspondences, Trans. Amer. Math. Soc. 
vol. 71 (1951) p. 349. 

3. , Intersection theory for cycles of an algebraic variety, Pacific Journal of 
Mathematics vol. 2 (1952) p. 473. 

4. , A note on abelian varieties, Rend. Circ. Mat. Palermo vol. 2 (1953) p. 
236. 

5. , Structure theorems for group-varieties, Annali di Matematica Pura ed 
Applicata vol. 38 (1955) p. 77. 

6. , Un teorema di struttura per le varietâ gruppali, Rend. Ace. Naz. Lincei 
vol. 18 (1955) p. 43. 

7. , Factor sets and differentials on abelian varieties, to appear. 
8. , II teorema di dualitâ per le varietà abeliane ed altri risultati, Rendiconti 

di Matematica e delle sue Applicazioni vol. 13 (1954) p. 98. 
6 See (16) of [8]; the result of n. 72 of [30] mentioned in the proof of (16) of [8] 

is valid only when A is simple. A standard manipulation shows, however, that if (16) 
of [8] is valid when A is simple, it is also valid for any A, 

7 Added February, 1956. It has now been proved that result (10), with the excep
tion of its last three words, remains true when k has characteristic 5^0, and that the 
index mentioned in (11) is equal to 1. 



530 IACOPO BARSOTTI 

9. C. Chevalley, Theory of Lie groups, Princeton, 1946. 
10. , Théorie des groupes de Lie, I I , Groupes algébriques, Paris, 1951. 
11. , Introduction to the theory of algebraic functions of one variable, New 

York, 1951. 
12. W. L. Chow, On the quotient variety of an abelian variety, Proc. Nat . Acad. Sci. 

U.S.A. vol. 38 (1952) p. 1039. 
13. , The jacobian variety of an algebraic curve, Amer. J . Math. vol. 76 (1954) 

p. 453. 
14. F . Conforto, Funzioni abeliane e matrici di Riemann, parte prima, Roma, 

1942. 
15. , Problèmes résolus et non résolus de la théorie des fonctions abêliennes 

dans ses rapports avec la géométrie algébrique, Coll. de Géom. Alg., Liège, 1952. 
16. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homo

geneous linear ordinary differential equations, Ann. of Math. vol. 49 (1948) p. 1. 
17. , On certain concepts in the theory of algebraic matric groups*, Ann. of 

Math . vol. 49 (1948) p. 774. 
18. T. Matsusaka, On the algebraic construction of the Picard variety, Jap. J . Math, 

vol. 21 (1951) p. 217. 
19. , On the algebraic construction of the Picard variety (II), Jap . J . Math. 

vol. 22 (1952) p. 51. 
20. , Some theorems on abelian varieties, Natural Science Reports of the 

Ochanomizu University vol. 4 (1953) p. 22; see also A remark . . . , ibid., p. 172. 
21 . H. Morikawa, Cycles and endomorphisms of abelian varieties, Nagoya Mathe

matical Journal vol. 7 (1954) p. 95. 
22. A. Néron, Problèmes arithmétiques et géométriques rattaches à la notion de rang 

d'une courbe algébrique dans un corps, Bull. Soc. Math. France vol. 80 (1952) p. 101. 
23. A. Néron and P. Samuel, La variété de Picard d'une variété normale, Annales 

de l 'Institut Fourier vol. 4 (1952) p. 1. 
24. M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. vol. 56 

(1952) p. 169. 
25. , Differentials of the second kind for algebraic function fields of one 

variable, Ann. of Math. vol. 57 (1953) p. 517. 
26. , Generalized jacobian varieties, Ann. of Math. vol. 59 (1954) p. 505. 
27. F . Severi, Funzioni quasi abeliane, Pont. Acad. Sci. Scripta Varia, vol. 4,1947. 
28. , Sulla caratterizzazione dei corpi di funzioni quasi abeliane, Convegno 

Intern. Geom. Diff., 1953, p. 21. 
29. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloquium 

Publications, vol. 29, 1946. 
30. , Variétés abêliennes et courbes algébriques, Paris, 1948. 
31. O. Zariski, Foundations of a general theory of birational correspondences, Trans . 

Amer. Math. Soc. vol. 53 (1943) p. 490. 
32. , The concept of simple point of an abstract algebraic variety, Trans . 

Amer. Math. Soc. vol. 62 (1947) p. 1. 

UNIVERSITY OF PITTSBURGH AND 

UNIVERSITY OF SOUTHERN CALIFORNIA 


