RESEARCH PROBLEM

817t. G. T. Whyburn: Dimension and nondensity preservation of mappings.

The property of a mapping f(X) = Y to preserve nondensity for compact subsets of X is characterized in terms of the lightness kernel L_f of f consisting of all $x \in X$ such that $f^{-1}f(x)$ is totally disconnected. These results are applied to show that if w=f(z) is continuous in a region X of the z-plane and differentiable at all points of a dense set $f^{-1}(Y_0)$ in X which is the inverse of an open subset Y_0 of Y=f(X), then dim $f(K) \leq 1$ for each compact set K in X of dimension ≤ 1 . Under the same conditions it is shown that f is strongly quasi-open. (Received July 5, 1956.)

818. R. E. Zink: A note concerning regular measures.

Let X be a topological space and let (X, S, μ) be an associated measure space. Let f(x) be non-negative and measurable (S). Define the measure ν on S by means of the formula: $\nu(E) = \int_E f(x) d\mu(x)$, for all E belonging to S. Using the ancient techniques of measure theory, one can easily establish the following remarks: (1) If μ is inner regular, so also is ν . (2) If μ is outer regular, then ν is outer regular if and only if for every set E on which f is integrable: (i) There exists a measurable open set containing E on which f is also integrable. (ii) There exists, for every pair of positive numbers ϵ , δ , a measurable open set U containing E - N(f) such that $\mu(\{x: f(x) > \delta\} \cap U) < \epsilon$. (Received July 5, 1956.)

V. L. KLEE, JR., Associate Secretary

RESEARCH PROBLEMS

15. Richard Bellman: Approximation theory.

Consider the differential equation (1) $dx/dt = \Phi(x)$, x(0) = c where $\Phi(x)$ is a continuous function of x satisfying additional conditions ensuring the existence of a unique solution over the interval $0 \le t \le T$ for $a \le c \le b$.

Let (2) $dy/dt = \sum_{k=0}^{K} a_k(c, t)y^k$, y(0) = c, represent an approximation to (1) where the coefficients $a_k(c, t)$ are functions to be determined so as to minimize one of the following functionals: (3) (a) $J_1 = \operatorname{Max}_{0 \le t \le T} |x-y|$, (b) $J_2 = \int_0^T (x-y)^2 dt$, (c) J_3 $= \operatorname{Max}_a \le c \le b$ $\operatorname{Max}_0 \le t \le T |x-y|$ (d) $J_4 = \operatorname{Max}_a \le c \le b \int_0^T (x-y)^2 dt$, (e) J_5 $= \int_a^b [\int_0^T (x-y)^2 dt] dc$ under the following alternatives: (4) (a) $a_k(c, t)$ depends only upon c, for $k = 0, 1, \dots, K$. (b) $a_k(c, t)$ are polynomials of degree M in t with coefficients dependent upon c. (The case K = 1 is the most interesting.)

Consider the analogous problem for systems of the form (5) $dx_i/dt = \Phi_i(x_1, x_2, \cdots, x_n)$, $x_i(0) = c_i$, $i = 1, 2, \cdots, n$, in the particular case where the approximating equation is (6) $dy_i/dt = a_i(c) + \sum_{j=1}^{n} b_{ij}(c)y_j(t)$, $y_i(0) = c_i$, and we wish to minimize the functional (7) $\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} [\int_0^T \sum_{i=0}^n (x_i - y_i)^2 dt] \prod_i dc_i$. (Received August 17, 1956.)

1956]