THE CON JUGATE FOURIER-STIELTJES INTEGRAL IN THE PLANE ${ }^{1}$

BY VICTOR L. SHAPIRO
Communicated by S. Bochner, September 27, 1958

Let $K(x)$ with $x=\left(x_{1}, x_{2}\right)$ be a $\operatorname{Lip}(\alpha, 2)$ conjugate CalderonZygmund kernel with $1 / 2<\alpha<1$, i.e. $K(x)=\Omega(\theta) r^{-2}$ where (r, θ) are the usual polar coordinates of x with $\Omega(\theta)$ a continuous periodic function of period 2π with vanishing integral over the interval $[0,2 \pi]$ satisfying the condition $\int_{0}^{2 \pi}[\Omega(\theta+h)-\Omega(\theta)]^{2} d \theta=0\left(h^{2 \alpha}\right)$ as $h \rightarrow 0$ (See [2] and [7, p. 106].) Let F be a countably additive set function defined on the Borel sets of the plane having finite total variation. Furthermore let $f(y)=(2 \pi)^{-2} \int_{E_{2}} e^{-i(y, x)} d F(x)$ be the Fourier-Stieltjes transform of F with E_{2} the plane and (y, x) the usual scalar product. Also let $k(y)$ be the principal-valued Fourier transform of K, i.e. $k(y)=(2 \pi)^{-2} \lim _{t \rightarrow 0 ; \lambda \rightarrow \infty} \int_{D(0, \lambda)-D(0, t)} e^{-i(y, x)} K(x) d x$ where $D(x, t)$ represents the open disc with center x and radius t. (It follows from the above assumptions that $k(y)$ exists for every y.) Then formally the conjugate Fourier-Stieltjes integral of F is given by $4 \pi^{2} \int_{E_{2}} e^{i(y, x)} f(y) k(y) d y$. In [2, p. 118], it is shown that $\lim _{t \rightarrow 0} \int_{E_{2}-D_{2}(x, t)} K(x-y) d F(y)$ exists and is finite almost everywhere. We call this limit the conjugate of F with respect to K and designate it by $\widetilde{F}(x)$. With $|y|=\left(y_{1}^{2}+y_{2}^{2}\right)^{1 / 2}$ and $I_{R}(x)=4 \pi^{2} \int_{E_{2}} e^{-|y| / \mathrm{R}} e^{i(y, x)} f(y) k(y) d y$, we propose to prove in this note the following theorem:

Theorem 1. $\lim _{R \rightarrow \infty} I_{R}(x)=\tilde{F}(x)$ almost everywhere.
In a certain sense this result is the planar analogue of [7, p. 54]. In a forthcoming paper we shall extend this result to n-dimensional Euclidean space and the n-dimensional torus. We shall also study those kernels which are Bochner-Riesz summable almost everywhere. In particular we shall show that if $K(x)$ is in C^{∞} then the conjugate Fourier-Stieltjes integral of F is summable (R, α) for $\alpha>1 / 2$ to $\widetilde{F}(x)$ almost everywhere, thus paralleling Bochner's result [1] for the Fourier-Stieltjes integral of F.

Letting $D_{\text {sym }} F$ designate the symmetric derivative of F [5, p.149] and $\int_{B}|d F|$ the total variation of F over B, we observe from [5, p. 119 and p. 152] and the standard argument of Lebesgue that

[^0]\[

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(\pi t^{2}\right)^{-1} \int_{D(x, t)}\left|d F(y)-D_{s y m} F(x) d y\right|=0 \text { a.e. } \tag{1}
\end{equation*}
$$

\]

So to prove the above theorem it is sufficient to prove the following theorem:

Theorem 2. At every point x for which (1) holds

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left[I_{R}(x)-\int_{E_{2}-D\left(x, R^{-1}\right)} K(x-y) d F(y)\right]=0 \tag{2}
\end{equation*}
$$

To prove Theorem 2, we set $H_{n}(R)=n^{-1} \int_{0}^{\infty} e^{-t / R} J_{n}(t) t d t$ where $J_{n}(t)$ is a Bessel function of the first kind of order n and establish the following lemmas:

Lemma 1. For $n=1,2, \cdots$, and all $R>0$,
(i) $\left|H_{n}(R)\right| \leqq R^{2}$,
(ii) $0<H_{n}(R) \leqq 1$,
(iii) there is a constant A independent of n and R such that

$$
\left|H_{n}(R)-1\right| \leqq A\left[\left(n R^{-1}\right)^{3 / 2}+\left(n R^{-1}\right)^{1 / 2}\right]
$$

(i) follows immediately from the fact that $\left|J_{n}(t)\right| \leqq 1$. For $n \geqq 2$, (ii) follows on using Euler's integral representation for hypergeometric functions [6, p. 384] and [4, p. 59], for then

$$
\begin{aligned}
& H_{n}(R)= \Gamma\left(\frac{n}{2}\right) \pi^{-1 / 2}\left[\Gamma\left(\frac{n}{2}-\frac{1}{2}\right)\right]^{-1} \\
& \cdot \int_{0}^{1} t^{n / 2+1 / 2}(1-t)^{n / 2-3 / 2}\left[t+R^{-2}\right]-(n / 2+1) \\
&
\end{aligned}
$$

(iii) follows from the fact that for $n \geqq 2$ and $R>2$, there is a constant A_{1} independent of n and R such that

$$
\left|H_{n}(R)-1\right| \leqq A_{1} n^{1 / 2}\left[\int_{0}^{R^{-1}} t^{-1 / 2} d t+n R^{-2} \int_{R^{-1}}^{1 / 2} t^{-3 / 2} d t+n R^{-2}\right]
$$

For $n=1$, (ii) and (iii) follow from the fact that $H_{1}(R)=\left(1+R^{-2}\right)^{-3 / 2}$.
Lemma 2. Let $\Omega(\theta)=\sum_{n=1}^{\infty} a_{n} e^{i n \theta}+\bar{a}_{n} e^{-i n \theta}$ and $\alpha>\beta>1 / 2$. Then there is a constant A independent of R and such that for $R \geqq 1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n} e^{i n \theta}+\bar{a}_{n} e^{-i n \theta}\right|\left|H_{n}(R)-1\right|<A R^{1 / 2-\beta} \tag{3}
\end{equation*}
$$

To prove the lemma, we observe that by [7, p. 143], $\sum_{n=1}^{\infty} n^{\beta-1 / 2}$ $\cdot\left|a_{n}\right|<A_{1}<\infty$ (consequently $\Omega(\theta)$ is in $\operatorname{Lip} \beta-1 / 2$), and therefore
by Lemma 1 that the sum in the left part of (3) is majorized by a constant multiple of

$$
R^{1 / 2-\beta}\left(\sum_{n=1}^{[R]} 2\left|a_{n}\right| n^{\beta-1 / 2}+\sum_{n=[R]+1}^{\infty} 4\left|a_{n}\right| n^{\beta-1 / 2}\right) \leqq 4 A_{1} R^{1 / 2-\beta}
$$

To prove Theorem 2, we can assume with no loss of generality that x is the origin. Next we see [3, Lemma 2] that for $y \neq 0, k(y)$ $=\sum_{n=1}^{\infty}(2 \pi)^{-1}\left(a_{n} e^{i n \theta}+\bar{a}_{n} e^{-i n \theta}\right)(-i)^{n} n^{-1}$ and consequently that

$$
I_{R}(0)=\int_{E_{2}}\left[\sum_{n=1}^{\infty}\left(a_{n} e^{i n \theta}+\bar{a}_{n} e^{-i n \theta}\right)(-1)^{n} H_{n}(R|u|)\right]|u|^{-2} d F(u)
$$

Therefore using (1), (i) of Lemma 1, and the absolute convergence of the Fourier series of Ω, we obtain that

$$
\begin{align*}
& \int_{D\left(0, R^{-1}\right)}\left[\sum_{n=1}^{\infty}\left(a_{n} e^{i n \theta}+\tilde{a}_{n} e^{-i n \theta}\right)(-1)^{n} H_{n}(R|u|)\right]|u|^{-2} d F(u) \tag{4}\\
&=o(1) \text { as } R \rightarrow \infty
\end{align*}
$$

Using (ii) of Lemma 1, the absolute convergence of the Fourier series of Ω, and the fact that F is of finite total variation on the plane, we conclude from (4) that to prove the theorem it is sufficient to show that for fixed $\lambda>0$,

$$
\begin{align*}
\int_{D(0, \lambda)-D\left(0, R R^{-1}\right)}[& \left.\sum_{n=1}^{\infty}(-1)^{n}\left(a_{n} e^{i n \theta}+\bar{a}_{n} e^{-i n \theta}\right)\left(H_{n}(R|u|)-1\right)\right] \tag{5}\\
& \cdot|u|^{-2}\left[d F(u)-D_{s y m} F(0) d u\right]=o(1) \text { as } R \rightarrow \infty .
\end{align*}
$$

Letting $G(t)=\int_{D(0, t)}\left|d F(u)-D_{s y m} F(0) d u\right|$, we see from Lemma 2 that the left side of (5) is majorized by a constant multiple of

$$
\begin{equation*}
R^{1 / 2-\beta} \int_{R^{-1}}^{\lambda} t^{1 / 2-(2+\beta)} d G(t) \tag{6}
\end{equation*}
$$

Since by assumption $G(t)=o\left(t^{2}\right)$ as $t \rightarrow 0$, we obtain that (6) is $O\left(R^{1 / 2-\beta}\right)+o(1)+R^{1 / 2-\beta} \int_{R^{-1}}^{\lambda} o\left(t^{2}\right) t^{1 / 2-(3+\beta)} d t$. Consequently (5) is established and the proof of the theorem is complete.

References

1. S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 175-207.
2. A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta. Math. vol. 88 (1952) pp. 85-139.
3. ——, On a problem of Mihlin, Trans. Amer. Math. Soc. vol. 78 (1955) pp. 209-224.
4. A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 1, New York, 1953.
5. S. Saks, Theory of the integral, Warsaw, 1937.
6. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge, 1952.
7. A. Zygmund, Trigonometrical series, Warsaw, 1935.

Rutgers University and

The Institute for Advanced Study

[^0]: ${ }^{1}$ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under contract No. AF 18(600)-1595.

