HOMOMORPHISMS AND IDEMPOTENTS OF GROUP ALGEBRAS

BY PAUL J. COHEN
Communicated by Walter Rudin, January 14, 1959

Let G be a locally compact abelian group. We denote by $M(G)$ the algebra of all finite complex-valued Borel measures on G. The algebra is normed by assigning to each measure its total variation, and the product or convolution of the measures μ and ν is defined by

$$
(\mu * \nu)(E)=\iint_{x+y \in E} d \mu(x) d \nu(y)
$$

If a particular Haar measure is chosen on G, the subalgebra of absolutely continuous measures may be identified with $L(G)$, the algebra of absolutely integrable functions. The Fourier transform of a measure μ is a function $\hat{\mu}$ defined on \hat{G}, the dual group of G, by the formula

$$
\hat{\mu}(\chi)=\int_{G}(\chi, g) d \mu(g)
$$

where (χ, g) denotes χ evaluated at g. Each χ thus yields a homomorphism of $M(G)$ onto the complex numbers. Every such homomorphism of $L(G)$ is obtained in this way.

Let ϕ be a homomorphism of $L(G)$ into $M(H)$. After composing with ϕ, every homomorphism of $M(H)$ onto the complex numbers either is identically zero, or can be identified with a member of \hat{G}. We thus have a map ϕ_{*} from \hat{H} into $\{\hat{G}, 0\}$, the union of \hat{G} and the symbol 0 , the latter to be considered as the point at infinity. Our main result is:

Theorem 1. For every homomorphism ϕ of $L(G)$ into $M(H)$, there exist a finite number of cosets of open subgroups of \hat{H}, which we denote by K_{i}, and continuous maps $\psi_{i}: K_{i} \rightarrow \hat{G}$, such that

$$
\psi_{i}(x+y-z)=\psi_{i}(x)+\psi_{i}(y)-\psi_{i}(z)
$$

with the following property: there is a decomposition of \hat{H} into the disjoint union of sets S_{j}, each lying in the Boolean ring generated by the sets K_{i}, such that on each S_{j}, ϕ_{*} is either identically zero or agrees with some ψ_{i}, where $S_{j} \subset K_{i}$.

Conversely, for any such map of \hat{H} into $\{\hat{G}, 0\}$, there is a homo-
morphism of $L(G)$ into $M(H)$ which induces it. The map carries $L(G)$ into $L(H)$ if and only if ϕ_{*}^{-1} of every compact subset of \hat{G} is compact.

The main tool in the proof of Theorem 1 is the following lemma:
Lemma. If G and H are compact, then the graph of ϕ_{*}, namely all pairs $\left(\phi_{*}(h), h\right)$ where $\phi_{*}(h)$ is not zero, is such that its characteristic function is the Fourier transform of a measure on $G \times H$.

The measure in the lemma must of course be an idempotent, that is, satisfy the equation $\mu * \mu=\mu$. The essential difficulty rests in the determination of all idempotent measures on a group.

Theorem 2. If μ is an idempotent measure, then $\hat{\mu}$ is the characteristic function of a subset E of \hat{G} which lies in the Boolean ring generated by cosets of open subgroups of \hat{G}.

It is not difficult to deduce Theorem 1 from the above statements in the case in which G and H are compact. In the general case one shows that there is a natural extension of ϕ to a homomorphism of $L(\bar{G})$ into $M(\bar{H})$ where \bar{G} and \bar{H} are the Bohr compactifications of G and H respectively. It can then be shown that if \hat{G} and \hat{H} are taken in the discrete topology, Theorem 1 holds. However we know that ϕ_{*} is continuous and after some manipulation we can show that Theorem 1 holds in the original form.

Both Theorems 1 and 2 were known in special cases before. We note that Theorem 2 implies that the support of an idempotent measure is contained in a compact subgroup. Conversely, it is simple to reduce Theorem 2 to the case where G is compact. If μ is absolutely continuous then it clearly is a finite sum of characters multiplied by Haar measure. The difficulty in general lies in analyzing the singular part of μ. Here the main point is to show that μ has mass on a closed subgroup of infinite index. In the case that \hat{G} has no elements of finite order, this statement is equivalent to saying that the set E intersects some cyclic subgroup of \hat{G} in an infinite set. For arbitrary \hat{G} it is proved by more complicated means. In either case one needs a technique which will yield some restriction on the nature of the set E. It is of course true that E can be an arbitrary finite set. Hence we can only hope to derive statements about the set E which allow for a finite number of exceptions. Nevertheless, our technique yields statements concerning finite sums of characters. These we state for the circle group.

Theorem 3. For some K, whenever c_{j} are such that $\left|c_{j}\right| \geqq 1$, and n_{j} are arbitrary distinct integers, we have

$$
\int_{0}^{2 \pi}\left|\sum_{j=1}^{N} c_{j} e^{i n j x}\right| d x>K\left(\frac{\log N}{\log \log N}\right)^{1 / 8}
$$

It is a conjecture of Littlewood that the inequality holds with $K \log N$ on the right side. Previously, however, it was not even shown that the left side tended to infinity as a function of N. Indeed in the course of the proof of Theorem 2 we actually need this fact. The proof of Theorem 3 is completely independent of any abstract considerations. It is accomplished by exhibiting finite linear combinations of exponentials, ϕ_{k}, such that $\left|\phi_{k}\right| \leqq 1$ and yet, if μ denotes the measure

$$
\sum c_{j} e^{i n j x} d x
$$

$\int \phi_{k} d \mu$ is large. We use some general lemmas concerning measures together with a combinatorial argument concerning the distribution of the integers n_{j}. In the case of idempotent measures, the same type of argument is used to show that the set E has many finite sets P such that for all x in E, there is some p in P such that $x+p$ lies in E. This, however, does not suffice to characterize E and further arguments are necessary. The details are too complicated to give here but will appear in forthcoming publications.

References

1. Arne Beurling, and Henry Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. vol. 1 (1953) pp. 120-126.
2. Henry Helson, Isomorphisms of Abelian group algebras, Ark. Mat. vol. 2 (1953) pp. 475-487.
3. -, Note on harmonic functions, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 686-691.
4. Walter Rudin, Idempotent measures on abelian groups, to appear in Pacific J. Math.
5. - The automorphisms and endomorphisms of the group algebra of the unit circle, Acta Math. vol. 95 (1956) pp. 39-55.
6. -, On isomorphisms of group algebras, Bull. Amer. Math. Soc. vol. 65 (1958) pp. 167-169.
7. R. Salem, On a problem of Littlewood, Amer. J. Math. vol. 7 (1955) pp. 535-540.
[^0]
[^0]: Massachusetts Institute of Technology

