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H*(S2rXS2s; Zv) where 2r and 2s are even and positive and r^m, sSn. 
Furthermore, if r^s, then H*(X*\ Zp) is isomorphic to 

H*(S2rXS2°;Zp) 

as a ring. 
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1. Introduction. Let £ be a real linear space with a seminorm || ||. 
Let S be the set of linear functionals of norm less than or equal to 1 ; 
thus, LÇzS whenever |L(x) | =*\\X\\ for all x£ .E. In many problems, 
it is important to know something about the extreme points of S; L 
is extreme if we cannot write L = (Z/+Z/ ' ) /2 with L' and L" dis­
tinct members of S. In this note, a new procedure will be developed 
for the study of a particular functional L; in particular, this will 
provide a surprisingly simple and useful characterization for the ex­
treme functionals. With each L, we shall associate a closed subspace 
VL of E in such a fashion that the relative "flatness" of 5 at L is de­
termined by the size of VL> In particular, L is an extreme point of 
5 if and only if VL is all of E. The results are formulated for a semi-
normed space E to allow their application to certain special cases of 
considerable interest. One such question is discussed in the last sec­
tion where we look for extreme functionals in the class of those that 
vanish on a fixed subspace M. 

2. Construction of VL- An equivalent way to say that L is extreme 
in 5 is to say that a functional 6 obeys | |L±0| | ëî l only if 0 = 0. Be­
cause we are dealing with a real space, this condition on d can be re­
written as 
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(1) \e(x)\ ^ ||*|| - |L(*) | all* G £ . 

The key to the results in this note is the construction of a special 
seminorm p* on E which is characterized as being the largest one 
that is dominated by the right side of (1) ; we therefore have 

(2) p*(x) g 11*11 - | L(x) | all x G E. 

From the maximality of p*, it follows at once that any functional 0 
that obeys (1) must also satisfy the condition | d(x) \ ^>p*(x) for all x. 
The subspace VL appears as the null space of p*\ an explicit descrip­
tion of VL is given later. We see at once that if VL is E itself, then 
0 = 0, and L is extreme; on the contrary, if VL (which is necessarily 
closed since p* by (2) will be continuous) is proper, then the Hahn-
Banach theorem supplies at least one functional 0 obeying |0(x)| 
= £*(x) (and hence (1)) and not identically zero, so that L is not ex­
treme. 

It is apparent that we can say more; if VL has finite co-dimension 
(deficiency) N, then there are only N independent functionals 0, and 
the "face" of S containing the nonextreme point L has dimension N 
exactly. We have therefore obtained a relatively explicit way to ex­
amine the local structure of the unit ball in the dual space of an arbi­
trary normed linear space. 

I t is convenient to construct VL and p* together, rather than to use 
the latter to obtain the former. Once the correct approach has been 
discovered, the details of the proof involve essentially only routine 
verifications; accordingly, we omit these and give the definitions and 
a chain of lemmas which lead to the desired results. 

DEFINITION 1. For any integer k>0, let Fk be the set of x £ E with 
\\x\\-L(x)£l/k. 

DEFINITION 2. Set VL = di (Fh-Fk). 

LEMMA 1. (i) FX^F2^F^ • • • , (ii) if | |x | | = l /2fc , then xE.Fk, 
(iii) given r>0 and k> choose kf*zrk. Then, rFk>QFk. (iv) F2k + F2kQFk. 

From this, we observe that Fk is a convex set containing a neigh­
borhood of the origin. 

LEMMA 2. VL is a subspace of E. 

It will appear later that VL is always a closed subspace. Note that 
a point y belongs to VL if and only if y can be expressed in the form 
u — v with u and v in Fky and this holds for each k. Several simple ex­
amples will help in visualizing this. Choose E as the plane with the 
usual norm ||#|| = {xi+x^}172 and L(x)=L(xi> X2)=#i. Then, Fk is a 
parabolic region and VL = E. If we modify the norm to | H | = |#i | 
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+ |x2 | then Fk becomes an unbounded polygonal region containing 
the positive horizontal axis, and Fk — Fk is the strip | |x2 | |é2/&; ac­
cordingly, VL is now the horizontal axis itself. 

LEMMA 3. If VL — E, then L is extreme in S. 

Introduce 9 as above, obeying (1). Then, if « G ^ , \0(u)\ ^1/k. 
Thus, if yÇzVL, then y = u — v with u and v in Fk, so that \0(y)\ 
S 10(u) | +16(v) | g 2 / * . Hence, 0(y)=0, and 0 must vanish on VL\ if 
VL = F, 0 is identically zero, and L is extreme. 

DEFINITION 3. pk(x)=inîueFk \\x+u\\ — L(x+u). 
DEFINITION 4. p(x) =limk+o0 pk(x). 
This limit exists for each x, since 0^pi(x) Spv,{x) ^pk(x) S\\x\\ 

- L ( x ) . 

LEMMA 4. (i) If x£.Fk — Fk, thenpk(x)^l/ky (ii) if pk(x)<l/k, then 
xÇ£Fk —Fk, (in) f or any x and yin E,pk(x+y) ^p2k(x)+p2k(y),(iv) given 
r>0, and k, there exist k' and k" larger than k with pk'(rx) 1^rpk"{x). 

LEMMA 5. The function p is almost a seminorm on E: (i) for any x 
and y, p(x+y) ^p(x) +p(y), (ii) if r>0, then p(rx)=rp(x), (iii) p(x) 
— 0 if and only if x £ VL, (iv) VL is a closed subspace of E. 

DEFINITION 5. p*(x) =\nizeE p(x+z)+p(z). 

LEMMA 6. p* is a seminorm on E: (i) for any x and y, p*(x-\-y) 
Sp*(x)+p*(y), (ii) p*(rx) = \r\p*(x) for all real r, (iii) £*(x)^ | |x | | 
— | L(x) | for all x, (iv) p*(x) =0 if and only if # £ VL, (v) p* is the 
largest seminorm on E obeying (iii). 

The argument outlined at the start of this section now establishes 
the main result. 

THEOREM 1. A functional L in S is extreme if and only if every point 
xÇzE can be expressed in the form u — v, with u and v in Fk,for every k. 

3. Constrained extremals. Let I f be a closed subspace of E, and 
denote by SM the functionals L of norm not exceeding 1 which vanish 
on M. 

THEOREM 2. L in SM is extreme in SM if and only if (Fk — Fk)+M 
= E, for each k. 

This may be deduced directly from Theorem 1. Introduce the new 
seminorm ||x|j / = infmGM ||x — w||, and observe that for any LÇLSM, 
we still have |Z(#) | ^ | H I ' f ° r a ^ x- Constructing the associated sets 
Fi, where xÇzFk if and only if ||x|| ' — L(x) ^1/k, we apply the main 
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theorem to conclude that L is extreme in S M if and only if Fk — Fk 

= E for each k. Clearly, Fk+MQFk', so that (Fk - Fk) + MQFk' - F{. 
In the other direction, if w G ^ , then for some m £ M , 

\\u - m\\ - L{u) < l/jfc 

so that uE:Fk + M. Accordingly, F^ — F2kQ(Fk~- Fk) + M, and we see 
that VI = n r ( f t , ~ ^ , ) = n i

0 0 { ( ^ - ^ ) + M } , proving Theorem 2. 
I t seems probable that VL + M is in fact always dense in F / , al­

though I do not have a proof of this at the moment. I t would also 
be of interest to know if there is an analogous result for complex linear 
spaces. 

In a paper to appear later, I will apply these methods to discuss the 
approximation of functions by solutions of a homogeneous differential 
equation. One example will show the connection. Choose E as the 
space of real functions continuous on a closed region 0, and M as the 
subspace of those that are harmonic in the interior of 0. For a func­
tion </>ÇzE, we wish to estimate the optimal error in approximating <j> 
by harmonic functions; for this, we need to know the extreme linear 
functionals L of norm 1 among those that vanish on the subspace 
M. In the determination of these, Theorem 3 proves to be a very 
effective criterion. 
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