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H*(S% X S%; Z,) where 2r and 2s are even and positive and r Em, s Sn.
Furthermore, if r£s, then H*(X~*; Z,) is isomorphic to

H* (Szr X .S2s ; Zp)
as a ring.
REFERENCES

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
2. E. E. Floyd, On periodic maps and the Euler characteristic of associated spaces,
Trans. Amer. Math. Soc. vol. 72 (1952) pp. 138-147.

3. A. Heller, Homological resolutions of complexes with operators, Ann. of Math.
vol. 60 (1954) pp. 283-303.

4. P. A. Smith, Fixed points of periodic transformations, Appendix B of Lefschetz,
Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, 1942,

UNIVERSITY OF CHICAGO

A COMPLETE CHARACTERIZATION FOR EXTREME
FUNCTIONALS

BY R. C. BUCK!
Communicated by A. M. Gleason, February 12, 1959

1. Introduction. Let E be a real linear space with a seminorm || ||.
Let S be the set of linear functionals of norm less than or equal to 1;
thus, LES whenever | L(x)| £||%|| for all ¥€E. In many problems,
it is important to know something about the extreme points of S; L
is extreme if we cannot write L= (L'+L")/2 with L’ and L dis-
tinct members of S. In this note, a new procedure will be developed
for the study of a particular functional L; in particular, this will
provide a surprisingly simple and useful characterization for the ex-
treme functionals. With each L, we shall associate a closed subspace
Vi of E in such a fashion that the relative “flatness” of .S at L is de-
termined by the size of V. In particular, L is an extreme point of
S if and only if V7 is all of E. The results are formulated for a semi-
normed space E to allow their application to certain special cases of
considerable interest. One such question is discussed in the last sec-
tion where we look for extreme functionals in the class of those that
vanish on a fixed subspace M.

2. Construction of V. An equivalent way to say that L is extreme
in S is to say that a functional 8 obeys ||L+6]| <1 only if 6=0. Be-
cause we are dealing with a real space, this condition on 6 can be re-
written as
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(1) lo@)| = |loll = | L) | all x € E.

The key to the results in this note is the construction of a special
seminorm p* on E which is characterized as being the largest one
that is dominated by the right side of (1); we therefore have

(2) 2@ =< |lal| = | L) | all & € E.

From the maximality of p*, it follows at once that any functional
that obeys (1) must also satisfy the condition |0(x)| < p*(x) for all x.
The subspace V' appears as the null space of p*; an explicit descrip-
tion of V7 is given later. We see at once that if Vy, is E itself, then
0=0, and L is extreme; on the contrary, if Vi (which is necessarily
closed since p* by (2) will be continuous) is proper, then the Hahn-
Banach theorem supplies at least one functional 6 obeying [0(x)[
=p*(x) (and hence (1)) and not identically zero, so that L is not ex-
treme.

It is apparent that we can say more; if V' has finite co-dimension
(deficiency) N, then there are only IV independent functionals 0, and
the “face” of S containing the nonextreme point L has dimension N
exactly. We have therefore obtained a relatively explicit way to ex-
amine the local structure of the unit ball in the dual space of an arbi-
trary normed linear space.

It is convenient to construct V' and p* together, rather than to use
the latter to obtain the former. Once the correct approach has been
discovered, the details of the proof involve essentially only routine
verifications; accordingly, we omit these and give the definitions and
a chain of lemmas which lead to the desired results.

DreriNiTION 1. For any integer 2>0, let Fj be the set of xS E with
[|«l] =L (x) =1/

DEFINITION 2. Set V=N (Fy— F).

LEmMMA 1. () FiDFDFD - - -, (i) if ||« £1/2k, then xEFy,
(iii) given r >0 and k, choose k' =rk. Then, rFyy C Fy. (iv) For+ For, & Fy.

From this, we observe that Fy is a convex set containing a neigh-
borhood of the origin.

LeEMmMA 2. V1 is a subspace of E.

It will appear later that Vy, is always a closed subspace. Note that
a point y belongs to V' if and only if ¥ can be expressed in the form
u—o with # and v in Fy, and this holds for each k. Several simple ex-
amples will help in visualizing this. Choose E as the plane with the
usual norm ||x|| = {#3+3}/2 and L(x)=L(x1, x2) =x1. Then, Fy is a
parabolic region and V=E. If we modify the norm to ||x|| =]
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+ | x| then F, becomes an unbounded polygonal region containing
the positive horizontal axis, and Fi— Fy is the strip ||| £2/k; ac-
cordingly, Vi is now the horizontal axis itself.

LeMMA 3. If Vi, =E, then L s extreme in S.

Introduce 6 as above, obeying (1). Then, if #EF,, IO(u)| =1/k.
Thus, if yE V1, then y=u—v with % and v in Fy, so that |8(y)]
< |0(u)| —I—[G(v)l <2/k. Hence, 8(y) =0, and # must vanish on Vy; if
Vi=E, 0 is identically zero, and L is extreme.

DEFINITION 3. pi(x) =infuer, ||#+u|| — Lx+u).

DEFINITION 4. p(x) =limg.,. Pr(x).

This limit exists for each x, since 0=p;(x) épg(x)§pk(x)§”xll
— L(x).

LemMA 4. (i) If x E Fr,— Fy, then pi(x) S1/k, (1) if pu(x) <1/k, then
x & Fy— Fy, (iii) for any x and y in E, pr(x+v) < par(x) +pan(v), (V) given
r>0, and k, there exist k' and k"' larger than k with piw (rx) Srpw(x).

LeMMA 5. The function p is almost a seminorm on E: (i) for any x
and y, p(x+y) Sp(x) +p(), (i) if r>0, then p(re) =rp(x), (iii) p(x)
=0 if and only if xEVy, (iv) Vi is a closed subspace of E.

DEFINITION 5. p*(x) =inf,cr p(x+2) +p(2).

LEMMA 6. p* is @ seminorm on E: (i) for any x and vy, p*(x+vy)
Sp*(w) +p*(y), (i) p*(rx) =|7| p*(x) for all real #, (iii) p*(x) _S_Hx”
- [L(x)] Jor all x, (iv) p*(x) =0 iof and only if xE V5, (v) p* is the
largest seminorm on E obeying (iii).

The argument outlined at the start of this section now establishes
the main result.

THEOREM 1. 4 functional L in S is extreme if and only if every point
x&E L can be expressed in the form u—v, with u and v in Fy, for every k.

3. Constrained extremals. Let M be a closed subspace of E, and

denote by Sy the functionals L of norm not exceeding 1 which vanish
on M.

THEOREM 2. L in Si is extreme in Sy if and only if (Fr—Fi)+M
=E, for each k.

This may be deduced directly from Theorem 1. Introduce the new
seminorm |||’ =infme |lx—m]||, and observe that for any L& Su,
we still have | L(x)| =||«||” for all x. Constructing the associated sets
Fy, where x € F{ if and only if Hx”'—L(x) =1/k, we apply the main
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theorem to conclude that L is extreme in Sy if and only if F{ — Fy
= E for each k. Clearly, Fy+ MCF{, so that (Fy—Fr) + MCFy — F{.
In the other direction, if # & Fy, then for some m & M,

le —m|| — L(u) < 1/

so that # € Fy+ M. Accordingly, Fy— Fj C (Fy— Fi) + M, and we see
that V/ =07 (F{ —F)=0¢ { (Fi—Fy)+ M}, proving Theorem 2.

It seems probable that Vi + M is in fact always dense in V/, al-
though I do not have a proof of this at the moment. It would also
be of interest to know if there is an analogous result for complex linear
spaces.

In a paper to appear later, I will apply these methods to discuss the
approximation of functions by solutions of a homogeneous differential
equation. One example will show the connection. Choose E as the
space of real functions continuous on a closed region @, and M as the
subspace of those that are harmonic in the interior of Q. For a func-
tion ¢ E E, we wish to estimate the optimal error in approximating ¢
by harmonic functions; for this, we need to know the extreme linear
functionals L of norm 1 among those that vanish on the subspace
M. In the determination of these, Theorem 3 proves to be a very
effective criterion.
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