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Many years ago and independently of each other S. Mandelbrojt 
and M. Schiffer were led to the following conjecture, which has ap
peared in print only recently [2, p. 326]: 

CONJECTURE M. S. If two power series J^f avz
v, Xa°° bvz

v (ire schlicht 
in the unit circle, then also the power series 

i v 

is schlicht in the unit circle. 
This will be disproved in the following lines. Let D be the image 

of the unit circle by w— J^f avz\ We denote by the symbols 5, 2 and 
K the classes of such power series for which D is schlicht, schlicht 
and star-shaped, schlicht and convex, respectively. Evidently 
KCZCS. 

Observe now that X)* zv(E.K. By a recent result concerning de la 
Vallée Poussin means [2, p. 298] we conclude that 

E( , )zveK, ( n = l , 2 , • • • ) , 
i \n + v/ 

and therefore [2, Lemma 5, p. 321] that 

Z>( We ses. 
i \n + v/ 

Applying the Conjecture M. S. to this special polynomial and an arbi
trary power series we obtain the following 

COROLLARY OF THE CONJECTURE M.S. ƒƒƒ(*) = ]T)" avz
v£:S then 

also 

» / In \ 

1 This paper was prepared partly under the sponsorship of the United States Air 
Force, Office of Scientific Research, ARDC, under a contract with the University of 
Pennsylvania. 
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In other words: The de la Vallée Poussin means of schlicht func
tions are also schlicht. However, this corollary is now easily dis
proved as follows: 

We appeal to a result of C. Loewner [l, pp. 117,118, and 120]: To 
every given function K(T) which is continuous for r ^ O and such 
that | K ( T ) | = 1 , there corresponds a power series f(z)=z+a2Z2 

+a303+ • • • which is in S and is such that 

a% 

We now select 

ƒ
> 00 

o 

= 4 ( f K{r)e~Tdr\ - 2 f 0c(r))2éT2^T. 

K(T) = e~iyT, (y real constant 7^ 0). 

The integrals are easily evaluated and we find 

ƒ(*) = z z2 H ZJLL. ZZ + . . . ç. Sm 

1 + iy (1 + n)2 

Applying the Corollary of the Conjecture M.S. for w = 3 we conclude 
that the cubic polynomial 

P(z) = 152 + 6a2z
2 + a3z

z G S. 

But then the quadratic polynomial 

1 
— (1 + iy)2P'(z) = (3 - iy)z2 - 8(1 + iy)z + 5(1 + iy)2 

<J 

can not have any zeros in the interior of the unit circle. 
On the other hand we find that 

1 + iy 
f = r (4 - (1 + 5*T)1/2) 

ô — ly 

is one of the two zeros of this quadratic ; J* is regular for all real y and 
we find its Taylor expansion at the origin to be 

f = l + A T _ l 7 2 + . . . ) ( | 7 | < 1 / S ) > 

Now 

- ( . -^+-) '+G+ - )"- ' -7 
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showing that | f | < 1 provided that 7 is sufficiently small. This contra
dicts our last italicized statement and completes our proof. 

For the discussion of a conjecture of Polya and Schoenberg ob
tained from the Conjecture M.S. by replacing in its statement the 
term "schlicht" by "star-shaped/' we refer to [2, pp. 324-334]. 
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