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Let f(n, r) represent an even function of # (mod 7); that is, f(n, 7)
=f((n, r), 7) for all integers n and a positive integral variable 7.

The following inversion relation is proved in [2]. If r=nr. and
f(n, r) is even (mod 7), then
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where u(r) denotes the Moébius function. This relation can be easily
verified on the basis of the definition of even function (mod 7) and
the characteristic property of u(r),
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We now state a generalization of (1). Let £(r) and 5(7) be arith-
metical functions satisfying
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The following theorem can be proved in the same manner as (1), with
(3) used in place of (2).

THEOREM 1. If r=nr, and f(n, r) is even (mod r), then
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Clearly (4) reduces to (1) in case &(r) =1, 9(r) =u(r). The case
£(r) =u(r), n(r) =1 yields the following dual of (1).

THEOREM 2. If r=rry and f(n, v) is even (mod r), then
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An immediate consequence of Theorem 2 is

COROLLARY 2.1. For every arithmetical function g(r, r2) of two posi-
tive integral variables ry, rs, there exists a uniquely determined even func-

tion (mod 7), f(n, r), such that g(ri, rs) is expressible as a divisor sum
(5) with respect to f(n, 7).
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The relation (1) is applied in [2] to give a new proof of the Ander-
son-Apostol generalization [1] of the Holder formula,
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where ¢(7) represents the Euler ¢-function. The following analogue
of the generalized Hélder relation can be proved in a similar manner,
with (5) replacing (1) in the proof.

Let g(r) and A(r) denote arithmetical functions, and define
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THEOREM 3. If g(r) is multiplicative and h(r) is completely multi-
plicative, and if for all primes p, h(p) #0, g(p) Zh(p), then
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Application of (8), with A(r) =7, g(r) =1, in connection with the
Dedekind-Liouville formula, ¢(r) = 4} du(r/d), yields the following
analogue of Hélder’s formula (6):

COROLLARY 3.1.
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Similarly, with k() =1, g(r) =u(r) /¢(r) in (8) it follows, on apply-
ing Landau’s identity, 7/¢(r) = Y a1 u2(d)/é(d), that

COROLLARY 3.2.
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Other potentially useful relations can be derived in a similar manner.
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