ON SOLUTIONS OF RIEMANN'S FUNCTIONAL EQUATION

BY K. CHANDRASEKHARAN AND S. MANDELBROJT

Communicated by S. Bochner, August 17, 1959

1. Let $\{\lambda_n\}$, $\{\mu_n\}$ $(n \ge 1)$ be two given sequences of positive numbers increasing to infinity, and let $\delta > 0$. We call the triplet $\{\delta, \lambda_n, \mu_n\}$ a *label*. If s is a complex variable, $s = \sigma + i\tau$, we speak of a solution of Riemann's functional equation

(1.1)
$$\pi^{-s/2}\Gamma\left(\frac{1}{2}s\right)\phi(s) = \pi^{-(\delta-s)/2}\Gamma\left\{\frac{1}{2}(\delta-s)\right\}\psi(\delta-s),$$

pertaining to the label $\{\delta, \lambda_n, \mu_n\}$, if there exist two Dirichlet series $\phi(s) = \sum a_n \lambda_n^{-s}, \psi(s) = \sum b_n \mu_n^{-s}$ (a_n and b_n complex) which do not vanish identically, and which admit finite abscissae of absolute convergence, and a function $\chi(s)$ which is holomorphic and uniform in a domain |s| > R, such that $\lim_{|\tau| \to \infty} \chi(\sigma + i\tau) = 0$ uniformly in every segment $\sigma_1 \leq \sigma \leq \sigma_2$, and such that, for some pair of real numbers α, β , we have

$$\chi(s) = \begin{cases} \pi^{-s/2} \Gamma\left(\frac{1}{2} s\right) \phi(s), & \text{for } \sigma > \alpha, \\ \\ \pi^{-(\delta-s)/2} \Gamma\left\{\frac{1}{2} (\delta-s)\right\} \psi(\delta-s), & \text{for } \sigma < \beta. \end{cases}$$

In three papers published recently, Bochner and Chandrasekharan [2], Chandrasekharan and Mandelbrojt [3], and Kahane and Mandelbrojt [4], have studied the problem of finding an upper bound for the number of linearly independent solutions of equation (1.1). Their results enable one to establish in certain cases a unique solution, and in certain others to deduce that the sequences $\{\lambda_n\}$, $\{\mu_n\}$ are periodic. In this note, which is a sequel to [3], we shall consider certain simple conditions which would ensure that $\delta = 1$. Let

$$D^{\mu} = \limsup (n/\mu_n), \quad h_{\mu} = \liminf (\mu_{n+1} - \mu_n).$$

We prove the following results.

THEOREM 1. If $h_{\lambda} \cdot h_{\mu} = 1$, δ is an odd integer, and equation (1.1) has a solution, then $\lambda_{n+1} - \lambda_n = h_{\lambda}$, and $\mu_{n+1} - \mu_n = h_{\mu}$, for every $n \ge 1$. In particular, if $h_{\lambda} = h_{\mu} = 1$, δ is an odd integer, and equation (1.1) has a solution, then $\lambda_{n+1} - \lambda_n = 1$, and $\mu_{n+1} - \mu_n = 1$ for every $n \ge 1$. THEOREM 2. If $h_{\mu} > 0$, δ is an odd integer, $b_n = O(1)$, and equation (1.1) has a solution, then $\delta = 1$.

THEOREM 3. Let $h_{\mu} > 0$, and let δ be an odd integer. If simultaneously, $(\sum a_n \lambda_n^{-s}, \sum b_n \mu_n^{-s})$ is a solution of equation (1.1) with the label $(\delta, \lambda_n, \mu_n)$, and $(\sum c_n \lambda_n^{-s}, \sum d_n \mu_n^{-s})$ is a solution with the label $(\delta, \lambda_n', \mu_n)$ for some (λ_n') , and $(\sum e_n \lambda_n^{-s}, \sum b_n d_n \mu_n^{-s})$ is also a solution with the label $(\delta, \lambda_n'', \mu_n)$ for some (λ_n'') , where $(b_n/d_n) = o(\mu_n)$; then $\delta = 1$.

2. For the proof of these theorems we require a number of lemmas.

LEMMA 1. Equation (1.1) implies, for a sufficiently large integer r, the following relation:

(2.1)
$$\Gamma\left\{\frac{1}{2}\left(\delta+1\right)\right\}\pi^{-(\delta+1)/2}\sum_{n=1}^{\infty}a_{n}\left[\frac{d^{2r}}{ds^{2r}}\frac{s}{\left(s^{2}+\lambda_{n}^{2}\right)^{\left(\delta+1\right)/2}}\right]-K_{r}(s)$$
$$=\left(2\pi\right)^{2r}\sum_{n=1}^{\infty}b_{n}\mu_{n}^{2r}\exp\left(-2\pi\mu_{n}s\right),$$

for Re s > 0, where $K_r(s)$ is holomorphic on the surface on which log s is defined, and $K_r(s) = O(|s|^{-\epsilon})$, $\epsilon > 0$, as $s \to \infty$ in any angle $|\arg s| \leq \theta_0$.

This has been proved by Bochner and Chandrasekharan [Theorem 2.1, p. 344]. By the definition of functional equation (1.1) it follows that the Dirichlet series on the right of (2.1) converges absolutely for $\sigma > 0$, and from (2.1) it follows that the singularities of its sumfunction are situated symmetrically on the imaginary axis $\sigma = 0$, at the points $(\pm i\lambda_n)$, and also possibly at the origin, which we may, for convenience, designate as λ_0 .

LEMMA 2. If $D^{\mu} < \infty$, and equation (1.1) has a solution, then $D^{\lambda} \cdot D^{\mu} \ge 1$, and $h_{\lambda} \cdot h_{\mu} \le 1$. (With the understanding that if $D^{\mu} = 0$, then $D^{\lambda} = +\infty$.)

This is an immediate consequence of a theorem of Chandrasekharan and Mandelbrojt [3, Theorem 1, p. 289] which implies [loc. cit., p. 290, ll. 6–9] that if $D^{\mu} < \infty$, and equation (1.1) is satisfied, then $\lambda_{n+1} - \lambda_n \leq D^{\mu}$ for every $n \geq 1$, that is, $\lambda_n \leq n \cdot D^{\mu}$, or $n/\lambda_n \geq 1/D^{\mu}$, or $D^{\lambda} \cdot D^{\mu} \geq 1$. Since we have $D^{\mu} \cdot h_{\mu} \leq 1$, it follows that $h_{\lambda} \cdot h_{\mu} \leq 1$.

LEMMA 3. If $h_{\mu} > 0$, δ is an odd integer, and equation (1.1) has a solution, then $\delta = 1$ or 3.

This is a result of Kahane and Mandelbrojt [4, Theorem 3, pp. 71-72].

LEMMA 4. If $h_{\mu} > 0$, and $\delta = 1$ or 3, and equation (1.1) has a solution, then $\mu_{n+1} - \mu_n \ge h_{\mu}$. And for $\sigma < 0$, the analytic continuation of the series

$$\Psi(s) = \begin{cases} \sum b_n \exp(-2\pi\mu_n s) & \text{if } \delta = 1, \\ \sum b_n \mu_n^{-1} \exp(-2\pi\mu_n s), & \text{if } \delta = 3, \end{cases}$$

which is a uniform function, is given by the series $-\sum_{1}^{\infty} b_n \exp(+2\pi\mu_n s)$, and the only singularities of $\Psi(s)$ are simple poles at the points $\pm i\lambda_n$, $n=0, 1, 2, \cdots$.

A result proved earlier by Chandrasekharan and Mandelbrojt [3, Theorem 3, p. 292] gives the Dirichlet series representation of $\Psi(s)$ in the negative half-plane as $\sum c_n \exp(2\pi\mu_n' s)$ but it is easy to see that $c_n = -b_n$, and $\mu_n = \mu_n'$, if one observes that by Agmon's theorem, used in that proof, the origin is a simple pole for the residual function $K_r(s)$ in (2.1). This fact is also obvious from the paper by Kahane and Mandelbrojt [4].

LEMMA 5. If $h_{\mu} > 0$, and $f(s) = \sum_{0}^{\infty} B_n \exp(-2\pi\mu_n s)$ has $\sigma = 0$ as its abscissa of absolute convergence, and the only singularities of f(s) on a segment of the imaginary axis of length greater than h_{μ}^{-1} are poles of greatest order q, then $B_n = O(\mu_n^{q-1})$.

This is a tauberian theorem of S. Agmon [1, Theorem 4.3(C)].

LEMMA 6. If $D^{\mu} < \infty$, and $b_n = O(\mu_n^{q-1})$, then for $\sigma > 0$, we have

$$f(s) \equiv \sum_{1}^{\infty} b_n \exp(-2\pi\mu_n s) = O(\sigma^{-q}).$$

If in the hypothesis we have $b_n = o(\mu_n^{q-1})$, then the conclusion is $f(s) = o(\sigma^{-q})$.

(i) Since $D^{\mu} < \infty$, we have $\mu_n > Ln$ for every *n*, where *L* is some constant. Now, for $\sigma > 0$, we have

$$|f(s)| \leq C \cdot \sum_{1}^{\infty} \mu_n^{q-1} \exp((-2\pi\mu_n\sigma))$$

$$\leq C \cdot (2\pi\sigma)^{1-q} \sum_{1}^{\infty} (2\pi\mu_n \sigma)^{q-1} \exp\left(-2\pi\mu_n \sigma\right).$$

The term $(2\pi\mu_n\sigma)^{q-1} \exp(-2\pi\mu_n\sigma)$ decreases (as μ_n increases), when $2\pi\mu_n\sigma > q-1$. Let n_σ be the smallest *n* for which we have $2\pi Ln\sigma > q-1$; in other words, for $n=1, \dots, n_{\sigma}-1$, we have $2\pi Ln\sigma \leq q-1$. Then

$$\sum_{n_{\sigma}}^{\infty} (2\pi\mu_n \sigma)^{q-1} \exp\left(-2\pi\mu_n \sigma\right) \leq \sum_{n_{\sigma}}^{\infty} (L \cdot 2\pi n \sigma)^{q-1} \exp\left(-2\pi L n \sigma\right)$$
$$= O\left(\sigma^{q-1} \sum_{n_{\sigma}}^{\infty} n^{q-1} \exp\left(-2\pi L n \sigma\right)\right)$$
$$= O(\sigma^{-1})$$

while

$$\sum_{1}^{n_{\sigma}-1} (2\pi\mu_{n}\sigma)^{q-1} \exp (-2\pi\mu_{n}\sigma) \leq \max_{x\geq 0} [x^{q-1}e^{-x}] \cdot (n_{\sigma}-1)$$
$$\leq K \cdot (n_{\sigma}-1) = O(\sigma^{-1}).$$

Hence $f(s) = O(\sigma^{-q})$.

(ii) In case $b_n = o(\mu_n^{q-1})$, let n_σ be the smallest *n* such that $(2\pi n\sigma) > (q-1)\sigma^{1/2}$. Then, as before,

$$\left|\sum_{1}^{n_{\sigma}-1} b_{n} \exp\left(-2\pi\mu_{n}s\right)\right| = O(\sigma^{1-q}(n_{\sigma}-1)) = O(\sigma^{1/2-q}),$$

and, since $n_{\sigma} \rightarrow \infty$, as $\sigma \rightarrow 0$, we have

$$\left|\sum_{n_{\sigma}}^{\infty} b_n \exp\left(-2\pi\mu_n s\right)\right| = o(\sigma^{1-q}) \cdot \left|\sum_{n_{\sigma}}^{\infty} (2\pi\mu_n \sigma)^{q-1} \exp\left(-2\pi\mu_n \sigma\right)\right|$$
$$= o(\sigma^{-q}).$$

Hence $f(s) = o(\sigma^{-q})$.

3. We shall now indicate the proofs of Theorem 1 to 3.

PROOF OF THEOREM 1. We remark that by Lemma 2, we have $h_{\lambda} \cdot h_{\mu} \leq 1$. If $h_{\lambda} \cdot h_{\mu} = 1$, then we have $h_{\lambda} > 0$, and $h_{\mu} > 0$, so that $D^{\lambda} < \infty$, and $D^{\mu} < \infty$. Hence, as in the proof of Lemma 2, we have $\mu_{n+1} - \mu_n \leq D^{\lambda} \leq h_{\lambda}^{-1} = h_{\mu}$, and $\lambda_{n+1} - \lambda_n \leq D^{\mu} \leq h_{\mu}^{-1} = h_{\lambda}$. Since δ is odd, we have, by Lemma 3, $\delta = 1$ or 3. Now, by the first part of Lemma 4, we have $\mu_{n+1} - \mu_n \geq h_{\mu}$, and $\lambda_{n+1} - \lambda_n \geq h_{\lambda}$, which lead to the desired result.

PROOF OF THEOREM 2. By Lemma 3, we have $\delta = 1$ or 3. We shall show that the case $\delta = 3$ is incompatible with the hypotheses. Consider the series $f(s) = \sum b_n \mu_n^{2r} \exp(-2\pi\mu_n s)$ in Lemma 1. Since $b_n = O(1)$, we have, by Lemma 6, $f(s) = O(\sigma^{-2r-1})$, for $\sigma > 0$. On the other hand, in a neighborhood of a pole, say $s = i\lambda_n$, $n \ge 1$, we have $|f(s)| > c \cdot |\sigma|^{-p}$, where p is the order of the pole, hence an integer, with $p = (1/2)(\delta+1) + 2r$. For these two estimates to be compatible, we should have $\delta = 1$.

PROOF OF THEOREM 3. It is sufficient to show that $\delta = 3$ is impos-

1959]

sible. If $\delta = 3$, then by Lemmas 5 and 1, we have $b_n = O(\mu_n)$, $d_n = O(\mu_n)$ and $b_n d_n = O(\mu_n)$. But by hypothesis, $|b_n| \leq \epsilon_n \cdot |d_n| \cdot \mu_n$, where $\epsilon_n > 0$, and $\epsilon_n \to 0$ as $n \to \infty$. That is, $|b_n d_n| \geq |b_n|^2 \cdot (\mu_n \epsilon_n)^{-1}$. We now observe that $b_n = o(\mu_n)$ is impossible, because otherwise, by Lemma 6(ii), we should have $f(s) = o(\sigma^{-2})$, which contradicts the fact that $|f(i\lambda_n + \sigma)|$ $> c \cdot \sigma^{-2}$ for $\sigma > 0$. Hence there exists a sequence (n_j) such that $|b_{n_j}| > \epsilon_{n_j}^{1/3} \cdot \mu_{n_j}$, which, together with the inequality for $b_n d_n$ obtained above, yields $|b_{n_j} \cdot d_{n_j}| \ge \epsilon_{n_j}^{2/3} \cdot \mu_{n_j}^2 \cdot (\mu_{n_j} \cdot \epsilon_{n_j})^{-1} \ge \mu_{n_j} \cdot \epsilon_{n_j}^{-1/3}$. But this contradicts the fact that $b_n d_n = O(\mu_n)$.

References

1. S. Agmon, Complex variable Tauberians, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 444-481.

2. S. Bochner and K. Chandrasekharan, On Riemann's functional equation, Ann. of Math. vol. 63 (1956) pp. 336-360.

3. K. Chandrasekharan and S. Mandelbrojt, On Riemann's functional equation, Ann. of Math. vol. 66 (1957) pp. 285-296.

4. J. P. Kahane and S. Mandelbrojt, Sur l'equation functionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Ecole Norm. Sup. vol. 65 (1958) pp. 57-80.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY AND College de France, Paris