CLOSED IDEALS IN GROUP ALGEBRAS

BY WALTER RUDIN¹
Communicated October 26, 1959

Let A(G) be the set of all Fourier transforms on the locally compact abelian group G, i.e., the set of all f of the form

$$f(x) = \int_{\Gamma} (x, \gamma) F(\gamma) d\gamma$$
 $(x \in G, F \in L^{1}(\Gamma)),$

where Γ is the dual group of G and (x, γ) is the value of the character γ at the point x. With the norm

$$||f|| = \int_{\Gamma} |F(\gamma)| d\gamma$$

A(G) is a commutative Banach algebra, and G is its maximal ideal space.

If I is a closed ideal in A(G), let Z(I) be the set of all $x \in G$ such that f(x) = 0 for every $f \in I$. Malliavin [3; 4; 5] has recently solved a problem of long standing by proving that in every nondiscrete G there is a closed set E such that $E = Z(I_1) = Z(I_2)$ for two distinct closed ideals I_1 and I_2 in A(G). Combined with an older result of Helson [1] this implies that there are infinitely many closed ideals I in A(G) with Z(I) = E.

It is the purpose of this note to point out that Malliavin's construction for compact G (he reduced the general case to this) yields an even more specific result:

THEOREM. Suppose G is an infinite compact abelian group. There is a real $f \in A(G)$ such that the closed ideals I_n generated by the powers $f^n (n=1, 2, 3, \cdots)$ are all distinct.

We sketch the proof. If $g \in A(G)$ and u is a real number, we define $a_{\gamma}(u)$ by

(1)
$$e^{iug(x)} = \sum_{\gamma \in \Gamma} a_{\gamma}(u) \cdot (x, \gamma) \qquad (x \in G).$$

Malliavin [5] constructed a real $g \in A(G)$ for which

(2)
$$|a_{\gamma}(u)| < \exp(-C|u|^{1/2})$$
 $(\gamma \in \Gamma),$

where C>0 is independent of γ . (The exponent 1/2 in (2) could be

¹ Research Fellow of the Alfred P. Sloan Foundation.

replaced by any $\lambda < 1$, but not by 1. Kahane's construction [2] should also be mentioned in this connection.) By (2),

(3)
$$\sup_{\gamma \in \Gamma} \int_{-\infty}^{\infty} \left| a_{\gamma}(u)u^{n} \right| du = M_{n} < \infty \qquad (n = 0, 1, 2, \cdots).$$

The mapping

(4)
$$\phi \to \int_{G} \phi(g(x))(-x, \gamma) dx$$

is, for each γ , a bounded linear functional in the space of all continuous functions ϕ on the range of g, and hence there are measures μ_{γ} on the line, with compact support, such that

(5)
$$\int_{\mathcal{G}} \phi(g(x))(-x, \gamma) dx = \int_{-\infty}^{\infty} \phi(t) d\mu_{\gamma}(t).$$

Taking $\phi(t) = e^{iut}$, we see that $a_{\gamma}(u)$ is the Fourier-Stieltjes transform of μ_{γ} , and (3) implies that $d\mu_{\gamma}(t) = m_{\gamma}(t)dt$, where each m_{γ} is infinitely differentiable and

(6)
$$\left| m_{\gamma}^{(n)}(t) \right| \leq M_n \qquad (\gamma \in \Gamma, t \text{ real}).$$

Since $a_0(0) = 1$, $m_0 \neq 0$, and there is a real number α such that $m_0(\alpha) \neq 0$.

Put $f(x) = g(x) - \alpha$. By (6), the expressions

(7)
$$T_n h = (-1)^n \sum_{\gamma \in \Gamma} H(\gamma) m_{\gamma}^{(n)}(\alpha) \qquad (n = 1, 2, 3, \cdots),$$

where $h(x) = \sum H(\gamma)(x, \gamma)$, define bounded linear functionals on A(G). The following two facts show that T_n annihilates I_{n+1} but not I_n , and hence establish the theorem:

- (A) $T_n f^n \neq 0$.
- (B) If $h(x) = (x, \gamma_0)f^{n+1}(x)$, for any $\gamma_0 \in \Gamma$, then $T_n h = 0$.
- (A) and (B) are proved by evaluating (7) for all h of the form

(8)
$$h(x) = P(g(x))(x, -\gamma_0) \qquad (\gamma_0 \in \Gamma)$$

where P is a polynomial. Set

(9)
$$c_{j,n}(\gamma) = \int_{-\infty}^{\infty} W_j^{(n)}(t) m_{\gamma}(t) dt,$$

where $\{W_j\}$ is a sequence of non-negative infinitely differentiable functions which vanish outside $(\alpha - 1/j, \alpha + 1/j)$, such that $\int_{-\infty}^{\infty} W_j(t) dt$

=1. Integrating (9) by parts n times, we see that $|c_{j,n}(\gamma)| \leq M_n$ and $\lim_{j} c_{j,n}(\gamma) = (-1)^n m_{\gamma}^{(n)}(\alpha)$. Hence (5) implies, if h is of the form (8), that

$$T_{n}h = \lim_{f} \sum_{\gamma} H(\gamma) \int_{-\infty}^{\infty} W_{j}^{(n)}(t) m_{\gamma}(t) dt$$

$$= \lim_{f} \sum_{\gamma} H(\gamma) \int_{G} W_{j}^{(n)}(g(x))(x, \gamma) dx$$

$$= \lim_{f} \int_{G} W_{j}^{(n)}(g(x)) P(g(x))(x, -\gamma_{0}) dx$$

$$= \lim_{f} \int_{-\infty}^{\infty} W_{j}^{(n)}(t) P(t) m_{\gamma_{0}}(t) dt$$

$$= (-1)^{n} \lim_{f} \int_{-\infty}^{\infty} W_{j}(t) \left(\frac{d}{dt}\right)^{n} [P(t) m_{\gamma_{0}}(t)] dt$$

$$= (-1)^{n} \left(\frac{d}{dt}\right)^{n} [P(t) m_{\gamma_{0}}(t)]_{t=\alpha}.$$

Taking $h = (g - \alpha)^n$, it follows that $T_n f^n$ is the *n*th derivative of $(-1)^n (t-\alpha)^n m_0(t)$, evaluated at $t=\alpha$, and this is $(-1)^n n! m_0(\alpha) \neq 0$. This proves (A).

Taking $h(x) = (x, \gamma_0)(g(x) - \alpha)^{n+1}$, we see that $T_n h$ is the *n*th derivative of $(-1)^n (t-\alpha)^{n+1} m_{\gamma_0}(t)$, evaluated at $t=\alpha$, which is 0. This proves (B).

REFERENCES

- 1. Henry Helson, On the ideal structure of group algebras, Ark. Mat. vol. 2 (1952) pp. 83-86.
- 2. J. P. Kahane, Sur un théorème de Paul Malliavin, C. R. Acad. Sci. Paris vol. 248 (1959) pp. 2943-2944.
- 3. Paul Malliavin, Sur l'impossibilité de la synthèse spectrale dans une algèbre de fonctions presque périodiques, C. R. Acad. Sci. Paris vol. 248 (1959) pp. 1756-1759.
- 4. ——, Sur l'impossibilité de la synthèse spectrale sur la droite, C. R. Acad. Sci. Paris vol. 248 (1959) pp. 2155-2157.
- 5. ——, Impossibilité de la synthèse spectrale sur des groupes abéliens non compacts, Publications Mathématiques de l'Institut des Hautes Etudes Scientifiques Paris, 1949, pp. 61-68.

University of Wisconsin