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This note is concerned with orthogonal polynomials on the unit 
circle and their use in probability theory. 

Let / ( / ) ^ 0 (not zero a.e.) be integrable on — 7r^/^7r; then, ac­
cording to Szegö [ l ] , a system of polynomials {ct>n(z)} orthogonal 
with respect to ƒ(/) on — ir^t^ir are uniquely determined by 

(i) (l>n(z) is a polynomial of degree n in which the coefficient of 
(1) zn is real and positive, 

(ii) ( l / 2 i r ) / ; ^ B (« ) f c (« ) / (0* = 8n«, (* = «"). 
Recent results [2 ; 3 ; 4 ] have shown the importance of the Szegö 

polynomials in discussing fluctuations of sums Sn=Xi-\- • • • 
+Xn, (n — 0, 1, • • • ), of independent, identically distributed random 
variables Xj. The results derived directly from the theory of the 
polynomials (1) were necessarily restricted to the case of symmetric, 
integral-valued random variables. We consider here an alternative 
definition of the polynomials (1) designed to allow a natural general­
ization of these results to nonsymmetric, not necessarily discrete-
valued random variables. This approach also seems to have connec­
tions with prediction theory. 

Let {an} and {/3n} be given sequences of complex numbers with 
anpn7él for all n, and let u0 and VQ be given constants. Then, the sys­
tem 

Un(z) ~ Un-l(z) = <XnZnVn(z)y 

Vn(z) ~ Vn-i(z) = PnZ-nUn(z) 

determines polynomials un(z) and vn(z) of at most degree n in z and 
1/s, respectively. The condition a n /3 n ^l for all n is necessary and 
sufficient for the existence of un(z) and vn(z) for all n. Let kl 
= LCUi (1—«mjSm)""1, and set 

(3) 4>n{z) = ZnVn(z)/kn, ^ n ( « ) = Z~nUn(z)/kn, 

where kn is one of the square roots of kl (we allow some arbitrariness 
here). We will connect <j>n{z) and \l/n(z) with the Szegö polynomials. 

The following notation will be used consistently below. Let ƒ(t) be 
integrable on —w^t^T with Fourier coefficients 

1 This research was supported by the U. S. Air Force. 
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Ak = — [*f(t)e-»*dt. 
2-K J -H 

Let £)w = det C4y_t-), (i, j = 0, 1, • • • , n), and let En and Fn denote the 
cofactors of A-n and An, respectively, in Dn. 

Implicit in definition (1) is the following generalization. Let ƒ(/) be 
integrable on — ir ^ t^ IT , and let Dn?£0 for all n ^ 0 ; then, the systems 
of polynomials {4>n(z)} and \^n(z)} are uniquely determined (to 
within a plus or minus sign) by 

(i') </>n(z) and ^n{z) are polynomials of degree n in z and 1/z, 
(4) respectively, with equal leading coefficients, 

(iY) (\/2T)Jl^n{z)$m{z)mdt = hn^ (* = *")• 
The condition Dn^O for all n is necessary and sufficient for the exist­
ence of <j>n(z) and \l/n(z) for all n. 

LEMMA 1. Let f(t) be integrable on — T^tSir, and let Dn^0 for all 
n^O. Then, the sequences an = En/Dn^i and ^n — Fn/Dn-.\ with UQ = VQ 
— \/AQ2 generate through (2) and (3) the same polynomials </>n(js) and 

\pn(z) determined by (4). Moreover, kl~AoDn-i/Dn. 

Lemma 1 shows the construction of an and {5n given ƒ(/). How is 
f(t) constructed given \an } and {ft,}? It can be shown using Lemma 
1 that the AkS (fe^l) are unique if an f(t) exists (Ao arbitrary), and 
we are led to the moment problem. We consider here only the case 
X)! 0 ^! < °° and ]C|j8n | < °°« ^n this c a s e there exist unique func­
tions <t>+(z) analytic in \z\ < 1 and <j>~~(z) analytic in \z\ > 1 such that 
lim un{z) —<j)+{z) uniformly in \z\ 5*1 and lim vn(z) — <l>~(z) uniformly 
in \z\ ^ 1 . For a special construction of f(t) in terms of <j>+{z) and 
4>~{z) see (b3) and Theorem 1. 

The following theorems show in part an equivalence between two 
important classes of polynomial systems defined separately by (3) 
and (4). These two classes are 

(a) the polynomials determined by (4) in case 
00 

(al) ƒ(/) = £ Afi»* with £ | A,\ < » , 

i«=-oo 

(a2) Dn ^ 0 for all n ^ 0, 
00 

(a3) log/(0 = £ £ * « ' with £ | By| < » , 
y=—oo 

and 
(b) the polynomials determined by (3) in case 

(bl) X) | an\ < °° and ]T I ft* | < °°> U0 = V0, 
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(b2) anpn 9* 1 for all n â 1, 

(b3) 0+(«) 5* 0 in | 21 ^ 1 and 0-(g) ^ 0 in | z | è 1. 

THEOREM 1. Le/ {a n } , {/3W}, ^o = *>o satisfy conditions (bl)-(b3). 
?"%£«, k2* =l im fe* exists, and <j>n(z) and \l/n(z) from (3) satisfy (4) w/A 

ƒ(/) = &V<£+(^0<£~(^0- Moreover, f{t) satisfies (al)-(a3). 

THEOREM 2. Let f(t) = ^^LdL-tAje*'* satisfy conditions (al)-(a3). 
JTœn, an — En/Dn-i and fin = Fn/Dn-i (see Lemma 1) satisfy (bl) a t ó 
(b2), #wd $+(s) and <t>~(z) satisfy (b3). 

THEOREM 3. Let f(t) satisfy conditions (al)-(a3), and let an 

= En/Dn-.i and f3n = Fn/Dn-i satisfy (bl) . Then, an and fin satisfy (b2), 
andcj>+(z) and <i>~(z) satisfy (b3). 

Theorem 2 could be proved for general f(t) satisfying (al)-(a3) if 
the following conjecture were proved. 

CONJECTURE. L e t / ( 0 satisfy (al) and (a2). Then, ƒ(/) satisfies (a3) 
if and only if ]£) |En / .Dn | < oo and ]F)| Fn/L>n\ < oo. In either case 

lim Dn/Dn~i = exp < — I log f(t)dt> . 
n-»oo ^ LIT J —T ) 

Constructing orthogonal polynomials by system (2) leads naturally 
to a method of constructing orthogonal families in the continuous 
case. These orthogonal families are quite useful in solving fluctuation 
problems of sums Sn in the nondiscrete case. The simplest continuous 
analogue of (2) is 

d 
— u(x, t) = a(x)etxtv(x, t) 
dx 

«(o, t) = 0(0, 0 = l, 

d 
— v(x, t) = /3(x)e-%xtu(x, t) 
dx 

in which a(x) and /3(x) are given continuous functions of x on 
0^x< oo. Since u(x, t) — l and v(x, t) — l are Fourier transforms of 
functions which vanish outside the intervals [0, x] and [ —x, 0], 
respectively, u(x, z) and v(x, z) are well-defined for all complex z. If 
a(x) and j8(x) are integrable on [0, oo), then there are unique func­
tions cj>+(z) and <t>~(z) analytic in the upper and lower half-planes, 
respectively, such that lim u(x, z)—<i>+(z), (x—><*>), uniformly in 
I m z ^ O and lim v(x, s) =<£~"(JS), (x—»oo), uniformly in Im 0 ^ 0 . Let 
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$ 0 , 0 = I eiytv{y, t)dy, *(x, t) = I e~iytu{y, t)dy, 
J o J o 

THEOREM 4. L ^ a(x) öwd /3(x) be continuous and integrable on 
O g x < o o , and let cf)+(z)9£0 for I m s ^ O and cj)~(z)9é0 for I m s g O . 
Then y 

1 /•* 
lim — I &(xi, t)$(x2, t)f{t)dt = min (#i, x2), 

A-*oo 27T J —A 

for all 0, where f (t) = 1/0+(/)<£-(*). 

The results stated here for the discrete case form the basis of a 
recent technical report by the author. Included in this report is an 
application to a fluctuation problem of a type first considered by 
Spitzer and Stone [3]. 
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