
FOURIER-STIELTJES TRANSFORMS OF MEASURES 
ON INDEPENDENT SETS 

BY WALTER RUDIN1 

Communicated March 30, 1960 

A subset E of the real line R will be called independent if the fol
lowing is true: for every choice of distinct points Xi, • • • , Xk in E 
and of integers Wi, • • • , nk, not all 0, we have niXi+ • • • +tikXk9*0. 
The main result of this note is 

THEOREM I. There exists an independent, compact, perfect set Q in R 
which carries a positive measure a whose Fourier-Stieltjes transform 

eixyda(x) (y £ R) 
—00 

tends to 0 as \ y \ —» oo. 

Sketch of proof. I t is known ([5, Theorem IV] and [6, p. 25]) that 
there is a compact perfect set P in R which is not a basis (i.e., the 
set of all finite sums ^n&i, with x * £ P and integers w», does not 
cover R and hence has measure 0) but which carries a positive meas
ure JJL whose F.S. transform vanishes at infinity. A certain deforma
tion of P will yield our set Q. 

P is constructed as the intersection of a sequence of sets Er which 
are unions of 2r disjoint intervals 7y,r. Set Pjtr = Pr\Ij,r, for 1 ^ j ^ 2 r . 

REMARK 1. Since P is not a basis, the set of all points 
w= (wi, • • • , Wk) in Rk such that ]T)Î ftj(xj+Wj) = 0 for some choice 
of Xi, • • • , Xk in P is, for each choice of integers »i, • • • , «*, a closed 
set of measure 0 (a union of certain hyperplanes). 

REMARK 2. Since there exists a function in LX(R) whose Fourier 
transform is 1 on Pj>r and is 0 on the rest of P , we have 

lim I eixydix{%) = 0 (1 £ j ^ 2r). 

Choose a sequence {cr}, 0 < c r < l , such that JX)5 £r>0. Put jfo(tf) 
= x, and inductively define a sequence of f unctions fr on P , of the 
form 

(1) fr(x) = X + Wj,r (X G Pj,r)-

Assume fr is constructed, and has the property that the condition 
1 Research Fellow of the Alfred P. Sloan Foundation. 
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2 r 

(A,) 0 < E l % | , \nj\ g r , % G P , > 
i 

implies 

2 r 

(Br) X) njft(%i) * 0. 
l 

By Remark 1 we can construct fr+i so that (Ar+i) implies (Br+i) 
and so that (Ar) implies 

1 2' 
i 2 ntfr+iixj) 
\ 1 

> Cr 

2r 

12 njMxj) 
l 

Remark 2 implies that the functions 

(3) gr(y) = f exp{*/r(aOy}**(*) (r = 0, 1, 2, • • • ), 

vanish at infinity, and it follows (again from Remark 1) that we can 
subject / r + i to the further requirements that \fr+i(x)—fr(x)\ <2~r 

for X £ J P and that |gr+i(y) — gr(y)\ <2~ r for all real y. 
Define ƒ(x) =limr^oo/r(x). Our construction shows that no finite 

sum 'Y)nif(xj) can be 0 if the Xj are distinct points of P and the rij 
are integers, not all 0. I t follows that ƒ is a homeomorphism of P onto 
an independent perfect set Q. Since the sequence {gr} converges 
uniformly, we have 

(4) lim f eM*dv(%) = 0. 
|î/J—>°o J P 

The formula <r(f(E)) =fx(E) defines a measure cr on Qf such that 

(5) J eif^)vdfi(x) = I eitydiJL(i)y 
J P J Q 

and the theorem follows from (4). 
We now list some consequences. 
1. Let M be the Banach algebra of all bounded Borel measures on 

jR, with convolution as multiplication, and let Mo be the algebra of all 
IXÇLM whose F.S. transforms vanish at infinity. I t is known (see [4] 
for references) that M is not symmetric. Theorem I implies 

THEOREM II . MQ is not symmetric.2 

2 This answers a question raised by Irving Glicksberg. 
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This is proved from Theorem I by showing (either by Sreider's 
original method [6, pp. 21-22] or by a device due to J. H. Williamson 
[4, p. 234]) that there is a ju£Mo such that the complex conjugate 
of its Gelfand transform (see [4]) is not the Gelfand transform of 
any member of M. 

2. Call a compact set E in R a Helson set if every continuous func
tion on E is the restriction to £ of a F.S. transform. There exist 
perfect Helson sets [3] and every countable, independent, compact 
set is a Helson set. However, by [ l ] Theorem I implies 

THEOREM I I I . The independent perfect set Q is not a Helson set. 

I t follows [3] that there is a bounded function whose spectrum 
lies in Q but which is not a F.S. transform; i.e., Q carries a "true 
pseudo-measure," in the terminology of [3]. 

3. Call a compact set E in R strongly independent if to every con
tinuous function ƒ on E, with | / | = 1 , and to every e > 0 there exists 
yÇzR such that \f{x)—eiyx\ <e for all x g £ . This definition stems 
from Kronecker's theorem: every finite independent set is strongly 
independent. 

Hewitt and Kakutani [2] have constructed strongly independent 
perfect sets. I t is not hard to show that strongly independent sets 
are Helson sets, and we conclude: 

THEOREM IV. The independent perfect set Q is not strongly inde
pendent. 

4. Finally, we point out that Q furnishes an example of an inde
pendent perfect set which is a set of multiplicity (even in the re
stricted sense; see [7, pp. 344, 348]) for the convergence of trigo
nometric series, and that it is not a set of type N [7, p. 236], whereas 
every strongly independent set is of type N. In fact, to every strongly 
independent set E one can associate an increasing sequence of inte
gers nk such that ^T, s m n^x converges absolutely for all #£22. 
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Consider the sequence of polynomials {un(x)\ that satisfy the 
recurrence 

(1) un+i(x) = O + a(n))un(x) + b(n)un-i(x), 

where a(n), b(n) are polynomials in n (and possibly some additional 
indeterminates) with integral coefficients. Moreover it is assumed 
that 

(2) Uo(x) = 1, ux(x) = G(0), b(0) = 0. 

The sequence {ww(x)} is uniquely determined by (1) and (2). 
The writer [l, Theorem l ] has proved that if m ^ l , r ^ l , then 

un(x) satisfies the congruence 

(3) X ) (— I ) * f ) Un+Sm(x)uir-8)m(x) = 0 ( m o d m r l ) , ±(-«•0 
s=o \ s / 

for all n è 1 » where 

(4) r, = [(r + l ) /2 ] , 

the greatest integer ^ ( r + l ) / 2 . In the present paper it is proved 
that un(x) satisfies the simpler congruence 

(5) X) (~ !)S ( ) Un+Sm(x)um * (x) = 0 (mod tn1), 
s=o \ s / 

where again r\ is defined by (4). Also it is shown that (5) implies 

(6) Z ) (— l ) 8 ( ) Un+Sm(x)Uk+(r-s)m(%) = 0 ( m o d Mri)y 

s-0 \ S / 


