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Consider the sequence of polynomials {un(x)\ that satisfy the 
recurrence 

(1) un+i(x) = O + a(n))un(x) + b(n)un-i(x), 

where a(n), b(n) are polynomials in n (and possibly some additional 
indeterminates) with integral coefficients. Moreover it is assumed 
that 

(2) Uo(x) = 1, ux(x) = G(0), b(0) = 0. 

The sequence {ww(x)} is uniquely determined by (1) and (2). 
The writer [l, Theorem l ] has proved that if m ^ l , r ^ l , then 

un(x) satisfies the congruence 

(3) X ) (— I ) * f ) Un+Sm(x)uir-8)m(x) = 0 ( m o d m r l ) , ±(-«•0 
s=o \ s / 

for all n è 1 » where 

(4) r, = [(r + l ) /2 ] , 

the greatest integer ^ ( r + l ) / 2 . In the present paper it is proved 
that un(x) satisfies the simpler congruence 

(5) X) (~ !)S ( ) Un+Sm(x)um * (x) = 0 (mod tn1), 
s=o \ s / 

where again r\ is defined by (4). Also it is shown that (5) implies 

(6) Z ) (— l ) 8 ( ) Un+Sm(x)Uk+(r-s)m(%) = 0 ( m o d Mri)y 

s-0 \ S / 
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for all w^O, k^O; for k = 0, (6) evidently reduces to (3). Indeed if we 
put 

r I & 
Uk = Unit...,„k(x) = 2I — - X l • • • Xfc I I ^ny+SymW, 

«H hsfc=r «Si' * * 'Ski y—1 

where Xi, • • • , X& are rational numbers that are integral (mod m) and 
such that 

\x _|_ . . . _|_ ^ == 0 (mod w), 

then it is shown that 

(7) vV s 0 (mod wri) 

for all Wi, • • • , WfcèO. 
We remark that the congruence (7) was suggested by certain con

gruences for the Bernoulli numbers that were obtained by Van-
diver [2]. 

There are numerous applications of (5). In particular we mention 
the following which is related to elliptic functions. The Stieltjes 
formula [3, p. 374] 

1 l-22-3*2 3-42-5&2 

sn(u, k2)e~xudu = • • • , 
0 x2 + a— x2 + 32a— x2 + 52a— 

where a = l+k2, suggests the consideration of the polynomials fn(x) 
defined by 

(8) fn+i(x) = (x + (In + l)2a)fn(x) - (In - \)(2n)2(2n + l)k%^(x)y 

together with /0(x) = l, fi(x)=x+a. Since (8) is of the form (1), it 
follows that these polynomials satisfy (5). Similar results hold for 
the polynomials associated in like manner with the integrals 

ƒ
• 00 / • 0O r% CO 

sn2(u,k2)e~xudu, I cn(u,k2)e~xudu, I dn(u,k2)e~xudu. 
0 J 0 Jo 

We remark that (8) implies 
00 sn2n+1u sinh xu 

n t r '(2»+1)1 x 

We show also that if p — 2w+1 is an odd prime then f(x) =ƒ(#) (mod 
p)y where 

(9) fP(x) = x{x™ - Cp(k
2)}2 

and 

ƒ. 
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(10) Cp(k
2) = ( - 1 ) - V f ) * * . 

Thus (5) reduces to 

(11) Z ( - 1 ) ' ( " )fn+8p(x)î7\x) - 0 (mod p \ 

where fp(x) is defined by (9) and (10). 

REFERENCES 

1. L. Carlitz, Congruence properties of the polynomials of Hermite, Laguerre and 
Lagrange, Math. Z. vol. 59 (1954) pp. 474-483. 

2. H. S. Vandiver, Note on a certain ring congruence, Bull. Amer. Math. Soc. vol. 
43 (1937) pp. 418-423. 

3. H. S. Wall, Analytic theory of continued fractions, New York, 1948. 

DUKE UNIVERSITY 


