
SOME THEOREMS AND CONJECTURES IN 
DIOPHANTINE EQUATIONS 

BY SERGE LANG 

The theory of diophantine equations may be regarded as the 
natural continuation of algebraic geometry proper: Having once ob­
tained a general theory of algebraic equations in several variables 
over essentially arbitrary ground fields (or rings), one tries to get 
statements depending on the special arithmetic structure of the coeffi­
cient domain. By definition, this becomes diophantine analysis. We 
shall list a few of the theorems and conjectures which arise in this 
direction. 

Let k be a field, and f(Xi, • • • , Xn) a polynomial, also written 
f(X), with coefficients in k. The equation ƒ = 0 defines an algebraic 
set, i.e. the set of all w-tuples (xi, • • • , xn) in some algebraically 
closed field containing &, such that f(x)=0. Such a point (x) in n-
space is said to be a zero of/. I t is said to be a rational point in k if 
all X{ lie in k. If ƒ is a form (i.e. a homogeneous polynomial) then one 
views ƒ as defining an algebraic set in projective space, and one con­
siders nontrivial zeros, that is zeros such that not all x% are 0. A non-
trivial zero then defines a point in projective space, which is rational 
over k if again the coordinates can be chosen in k. 

More generally, one considers systems of equations, or varieties 
(meaning an absolutely irreducible algebraic set). If F is a variety 
defined over a field k, then a point in it is rational over k if it has a 
set of coordinates in k. 

The basic coefficient domain is that of the rational numbers Q or 
the integers Z. It is but a step from this to a finite extension k of 
Q (called a number field) or the ring of integers Ik of k instead of Z. 
We have primes p associated with such fields: They are the absolute 
values which either induce the ordinary absolute value on Q (called 
archimedean primes) or the £-adic absolute value, defined by a prime 
number p: 

\prm/n\$ = \/pr 

if m, nÇzZy win F^O, and p\mn. The latter are called finite primes. One 
can then form the completion k$ under the prime p, which is called 
a p-adic field, and is the field of real or complex numbers if p is 
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archimedean. (It is also becoming standard to consider field and ring 
extensions of finite type.) 

Because of the topology and the completeness, a p-adic field gives 
rise to simpler diophantine problems than a number field, and one 
tries to reduce certain classes of diophantine problems to p-adic 
ones. Let us observe right away that a variety (say affine) defined 
over a number field k has a rational point in all but a finite number 
of p-adic fields kp. (Remember V is absolutely irreducible.) This is 
easily seen, for instance as follows: By cutting V with sufficiently 
general hyperplane sections, one reduces the question to the case 
where F is a curve. One then reduces mod p. By the Riemann hypoth­
esis in function fields (i.e. Weirs theorem [25]) the curve has a simple 
point mod p for all but a finite number of primes, and this simple point 
can be refined to a p-adic point, say by Hensel's lemma. 

1. Hasse's theorem. Let us begin with essentially the simplest type 
of variety, that defined by a quadratic equation. The main result 
here is Hasse's theorem (for an exposition, see for instance [26]). 
Let k be a number field, ƒ a quadratic form with coefficients in k. Then 
ƒ has a nontrivial zero in k if and only if ƒ has a nontrivial zero in 
each kp. 

This is supplemented by a useful p-adic criterion: If p is a finite 
prime, then every quadratic form in 5 variables over the p-adic field kp 
has a nontrivial zero in kp. 

These two theorems are typical examples of the following general 
principles: To get a global theorem from local ones, and to get solu­
tions if the number of variables is large. As a corollary, we see that 
every quadratic form in 5 variables over a number field k, which is 
indefinite for every real embedding of the number field, has a non-
trivial zero in k. 

One may try to embed the above statements in theories concerning 
either forms of higher degree than 2, or concerning principal homo­
geneous spaces. Let us discuss the first. 

2. Quasi-algebraic closure. There is a theorem of Peck [17] that 
a form over a number field k of degree d, in n variables has a nontrivial 
zero inkifn is sufficiently large compared to d, and if k is totally imagi­
nary (i.e. has no embedding into the reals). 

The condition that k be totally imaginary is essential: A sum of 
squares in a real field never has a nontrivial zero, and in fact, Artin 
gives an example of a form which is indefinite, has a p-adic zero for 
all p, has arbitrarily many variables, and still no zero in &, namely 
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(XI + • • • + XlY - 2(Yl+ • • • + YlY = 0 

over the rational numbers (substituting sums of squares in U2 — 2T2). 
Artin's substitution method is also used to reduce a system of 

simultaneous equations to one equation (especially with reference to 
quasi-algebraic closure, see below). One also knows how to reduce a 
system over a finite extension E of k to a system of equations in k 
(linearizing by means of a basis). For both of these, cf. [6; 7] . 

The above reductions are " multiplicative." This is important, be­
cause one may ask whether by restricting one's attention to forms 
of odd degree one does not recover the desired conclusion even when 
the field is real. Taking function fields over the reals as ground fields, 
I gave precise criteria under which such forms have nontrivial zeros 
[7]. The analogue of Peck's theorem for forms of odd degree and any 
number field was proved by Birch [ l ] . 

The Birch-Peck theorem holds for a large number of variables. 
Except for quadratic forms, one has no precise bound in number 
fields, but Artin has at least made conjectures concerning it. He de­
fines a field K to be quasi-algebraically closed (QAC) if every form 
with coefficients in K, of degree d, in n variables, with n>d, has a 
nontrivial zero in K. A field which is quasi-algebraically closed does 
not admit division algebras of finite degree above it. Tsen proved 
that a function field in one variable over an algebraically closed con­
stant field has no such division algebras. Analysing Tsen's proof, 
Artin was led to make the above remark, to define quasi-algebraic 
closure, to realize that Tsen's proof actually showed that such a 
function field was quasi-algebraically closed, and in view of Wedder-
burn's theorem, to conjecture that finite fields are QAC. This was 
proved by Che valley [5]. Furthermore, it is known from class field 
theory that the field £2 obtained by adjoining all roots of unity to 
the rationals admits no finite division algebra above it. This and the 
analogy with function fields (a function field in one variable over a 
finite field to which one adjoins all roots of unity becomes a function 
field over an algebraically closed constant field) led him to conjecture 
that 12 is QAC. Thus, for instance, every form of degree d in n vari­
ables over the rationals with n>d would have a nontrivial zero in 
some cyclotomic field. 

How about number fields proper? In this case, Artin suggested 
that probably the condition n > d has to be replaced by n > d2 (always 
provided the field is totally imaginary). This is true in the analogous 
case of function fields over finite fields. At any rate, Artin conjectured 
that a cubic form in 10 variables over the rationals Q has a nontrivial 
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zero in Q. Artin also made the analogous local conjectures. The one 
concerning the roots of unity is proved in my thesis [ó], and the case 
of cubic forms is settled by Lewis [12]. The p-adic case proper re­
mains open, in spite of the fact that the analogue for power series in 
one variable over a finite field is easily taken care of [ó] with n>d2. 
By the way, in each case the condition n>d or n>d2 is easily seen to 
be best possible. None of the global conjectures has yet been proved. 

One can consider function fields over number fields or p-adic fields 
as ground fields themselves, and extend to those and to power series 
fields the same type of result. The condition n>d (or n>d2) has to 
be replaced by n>di where i goes up with the number of variables. 
Although one can settle the function field case [6], the case of power 
series in several variables also remains open. 

Finally, to go back to number fields, it seems to me reasonable to 
expect that a form with n>d at least has a nontrivial zero in all 
but a finite number of p-adic fields. As pointed out previously, there 
is a problem here only if the form is not absolutely irreducible. 

3. Principal homogeneous spaces. Let us return to quadratic 
forms. Let ƒ, g be two quadratic forms over a number field k, in the 
same number of variables. They are equivalent over k if there exists 
a matrix T with coefficients in k such that Tf = g. I t follows immedi­
ately from Hasse's theorem that if ƒ, g are equivalent over every k$ 
then they are equivalent over k (see Witt [26]). 

Observe that the set of transformations T such that Tf = g is a 
principal homogeneous space over the orthogonal group of ƒ, which 
operates simply transitively on this set. More generally, let G be a 
group variety defined over a field k. A variety V is said to be a 
principal homogeneous space of G over k if F is defined over k, and 
we are given over k an everywhere defined rational map oî GXV 
into V such that for every point z /£F , the map x—>xv of G into V 
establishes an isomorphism of G onto V (for the structure of algebraic 
variety). Cf. Weil [22], who was the first to call attention to principal 
homogeneous spaces in relation to diophantine analysis. 

This is precisely the situation we have with our quadratic forms 
ƒ, g and they are equivalent over k if and only if the principal homo­
geneous space has a rational point. This aspect of Hasse's theorem 
may therefore be formulated by saying that a principal homogeneous 
space over the orthogonal group has a rational point in k if and only if 
it has a rational point in every k$. Serre has suggested that this may 
remain true for any semi-simple group G, not only the orthogonal 
group. 
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The conclusion that the existence of a p-adic point for all p implies 
the existence of a rational point in the number field k does not hold 
when one considers other types of group varieties, for instance an 
abelian variety, or for concreteness an elliptic curve. Selmer [18] has 
given examples of elliptic curves over the rationals, namely 3 X 3 + 4 F 3 

+ 5 Z 3 = 0, which have a point in every Qp but not a rational point 
in Q. Every such curve can be regarded as a principal homogeneous 
space over its Jacobian. (See also Cassels [2].) 

Here again, before dealing with the global theory, one studies the 
local one, over a p-adic field. Over the reals, this is the way one can 
interpret a paper of Witt [27]. Over p-adic fields, Shafarevic [19] 
and Tate [2l] have considered the question, and obtained a classi­
fication theorem in the case of elliptic curves. 

In many cases, the principal homogeneous spaces and the existence 
of birational correspondences between curves had been studied by 
Chatelet [4], who pointed out their connection with cohomology. 
Let G be a group variety and V a principal homogeneous space 
defined over a field k. Let K be a Galois extension of k> with Galois 
group ö = gK/fc, in which V has a rational point Vo. For each cÇg , 
the point avo lies in V, and hence there exists a unique element xff in 
G, rational over K, such that xffcrvo = VQ. One verifies that (xff) is a 
1-cocycle of Q in GK, i.e. that Defining coboundaries in the 
obvious way, one obtains a cohomology set H1^, GK). One sees im­
mediately that V has a rational point in k if and only if its associated 
cohomology class in H1^, GK) is trivial. Going to the injective limit 
to the separable algebraic closure of k, one is led to study the set 
Hl(k, G), limit of the Hl{&Kik, GK), and whose elements are in bijec-
tive correspondence with the isomorphism classes of principal homo­
geneous spaces of G over k. (Cf. [ i l ] ) . If G is commutative, then 
Hl(k, G) is of course a group, called the first cohomology group, and 
one can define also the higher dimensional ones. 

When the ground field is a p-adic field (p finite) Tate [2l] has ob­
tained a duality theorem: Let A be an abelian variety defined over k$. 
Then H1^, A) is dual to the compact group of rational points in k$ of 
the Picard variety of A. He has also obtained a complete analysis of 
the cohomology involved for a coefficient module which arises from 
the points of a commutative group variety which is of multiplicative 
type (i.e. becomes a product of multiplicative groups over the alge­
braic closure), and for abelian varieties, both for the limit cohomol­
ogy and in finite layers. The former, in finite layers, are dual to the 
modules arising in the Nakayama-Tate theorem of class field theory 
[15]. For an abelian variety A over k^ he shows that Hr(k$, A)=0 if 
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r>lf and if K is finite Galois over k$, then Hr(QK/k$, AK) is dual to 
Hl~r(§Km, AK) where Â is the Picard variety, and H now denotes 
Tate's cohomology functor with — <*> <r< oo. 

One may consider more generally the limit cohomology (say in 
dimension 1) with arbitrary coefficients: Let F be a group on which 
the Galois group Tk of the algebraic closure of k over k acts continu­
ously (regarding Tk as compact with Krull topology, and F as dis­
crete). (Cf. Bourbaki seminar, 1959, Exposé on Tate's work.) One 
can build Hl(Tk, F) as a limit set (group if F is commutative) just 
as with the connected group varieties. If k is a p-adic field, and F is 
commutative and finitely generated (over Z) then Tate has shown 
that this Hl(Tk, F) is finite. If F is a finite group (not necessarily 
commutative) it is actually easy to prove the finiteness statement 
directly, using the fact that a p-adic field has only a finite number of 
extensions of given degree. If F is finitely presented (i.e. given by a 
finite number of generators and relations) the answer is not known. 

Going over to the global case, one sees that Hl(k, A) is a large 
group. Shafarevic has given examples of elliptic curves A over the 
rationals Q such that H^Ck, A) has elements of arbitrarily high period 
[19]. Over a suitable number field, this can be done more easily [ l l ] . 
On the other hand, Shafarevic and Tate have been led to conjecture 
that if A is an abelian variety defined over a number field k, then the 
subgroup of Hl(k, A) consisting of those elements which split over every 
k$ is finite. Stated in geometric terms, this means that the set of iso­
morphism classes of principal homogeneous spaces over A defined 
over k, which have a rational point in every p-adic field is finite. 

Tate has proved the analogous statment for the cohomology aris­
ing from groups of multiplicative type, or from coefficient modules 
which are finitely generated (over Z). As in the local case, if F is a 
finite group (not necessarily commutative), one can give a direct 
proof of the analogous fact, without using class field theory, and 
with all but a finite number of p, instead of all p. (One uses that in a 
Galois extension of degree > 1 , infinitely many primes do not split 
completely.) 

As Chatelet perceived [3; 4] , the noncommutative cohomology 
also arises when one asks for conditions under which two varieties 
become isomorphic to each other. For instance, let V, W be two 
projective nonsingular varieties defined over k. Let Ti V—>W be an 
isomorphism defined over the Galois extension K oi k, with group 
g. Then p-lTa is a cocycle of Q with coefficients in the group of auto­
morphisms of V defined over K, and V is isomorphic to W over k 
if and only if this cocycle splits (cf. Weil [24]). This situation is 
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similar to that which arose from Hasse's theorem. Chatelet saw that 
from class field theory, one can deduce the theorem that if a variety 
over a number field becomes isomorphic to projective space over every 
p-adic field kp, then it is isomorphic to projective space over k. The co-
cycle one gets is in the projective group, connected with the multipli­
cative group (handled in class field theory) through the exact se­
quence with the full linear group, whose Galois cohomology in di­
mension 1 is trivial. 

The group of automorphisms of a variety (projective nonsingular) 
is still somewhat of a mystery in general, although one knows that 
it is a group extension of an algebraic group by a discrete group 
(Matsusaka). One may ask whether this discrete group (which in 
general is not commutative) is finitely presented. For curves of genus 
^ 2 , it is classical that it is finite, and hence if V is a curve of genus 
^ 2 defined over a number field k, then the set of curves (up to k-iso-
morphism) which are defined over k, and are isomorphic to V over every 
kp, is a finite set. 

For all the above groups, one can look at the Galois cohomology 
for varieties defined over number fields, and ask in each case whether 
that part of the first cohomology set which splits at all p is finite. 
Supposing for instance that the conjecture of Shafarevic-Tate is 
true for abelian varieties, can it be extended to all algebraic groups 
defined over a number field? Can the preceding theorem be extended 
to all varieties (projective nonsingular), beginning with elliptic 
curves, or analogously, can it be extended to forms of arbitrary de­
gree, considering only the group of all linear automorphisms? 

I would like to conclude this discussion of principal homogeneous 
spaces by pointing out that over a finite field, every homogeneous space 
of a group variety has a rational point [S ]. 

4. Curves. We have seen in Hasse's theorem, and the theory of 
quasi-algebraic closure, that equations with many variables have a 
tendency to have solutions. In the opposite direction, equations with 
few variables have a tendency not to have any, or at any rate rather 
few. In this connection, one has again some theorems and some con­
jectures. 

Foremost among the theorems is the following one of Siegel's 
[20] : A curve f(X, Y) = 0 defined over a number field has only a finite 
number of integral points (i.e. points (x, y) whose coordinates are 
integers of that field) if its genus is ^ 1. For curves of genus 1 over the 
rationals, Mahler has extended this to points having only a finite 
number of prime numbers in their denominators [13], and actually 
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I can extend the theorem to a curve of genus ^ 1 defined over a field 
of finite type over Q, with points having their coordinates in a sub-
ring of finite type over Z [9]. 

Mordell [14] has conjectured that actually the curve will have only 
a finite number of rational points {in a number field) if its genus is at 
least 2. 

A curve of genus 1 is an elliptic curve, and if it has a rational point 
its rational points form a group (coming from the addition formula 
for elliptic functions). If this group contains one element of infinite 
order, then it can not be finite, of course. For curves of genus 1 
over the rationals Q, Mordell proved that this group is finitely gener­
ated [14]. This was extended by Weil [23] to the group of rational 
points of an abelian variety over a number field, and this Mordell-
Weil theorem has applications to geometric problems of algebraic 
geometry (Néron [ ló] , see also [lO]). 

A curve of genus ^ 2 can always be embedded in its Jacobian J , 
an abelian variety, over a field in which it has a rational point. The 
group of rational points Jh being finitely generated if k is a number 
field, one sees Mordell's conjecture in the following light: The inter­
section of this finitely generated group with the curve should be 
finite, the curve being of lower dimension than J (if its genus is à 2) 
and thus rather thinly distributed in / . One may even ask whether 
it might not be true that Mordell's conjecture could be extended to 
any subvariety of an abelian variety, which does not contain the 
translation of an abelian subvariety. 

Thus, for curves of genus ^ 2 and abelian varieties, the conjecture 
(resp. theorem) asserts that there are as few rational points as is 
compatible with the obvious structure of the variety under considera­
tion. The Fermât curve Xn+ F n = l has genus j^2 if n^4f and thus 
falls under Mordell's conjecture. 

In this connection, I would conjecture that Siegel's finiteness state­
ment concerning integral points should in fact be true for affine sub­
sets of abelian varieties, or at least an affine subset which is the 
complement of a hyperplane section in some projective embedding. 
The theorem for curves should then be obtainable by pull-back from 
the Jacobian. 

Finally, there is a remarkable conjecture of Siegel, at the end of 
[20], which I quote: "Die Untersuchungen der vorangehenden 
Paragraphen geben die Möglichkeit, eine Schranke für die Anzahl 
der Lösungen der diophantischen Gleichung/(X, Y) = 0 als Funktion 
der Koeffizienten von ƒ explicit aufzustellen, falls diese Gleichung 
nur endlich viele Lösungen besitzt. Man kann nun vermuten, dass 
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sich sogar eine Schranke finden lâsst, die nur von der Anzahl der 
Koeffizienten abhângt; doch dürfte dies recht schwer zu beweisen 
sein." Siegel then goes on to give evidence for this conjecture, by 
treating "allerdings sehr spezielle Resultate." 
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