SOLUTION OF THE PLATEAU PROBLEM FOR
m-DIMENSIONAL SURFACES OF VARYING
TOPOLOGICAL TYPE

BY E. R. REIFENBERG
Communicated by E. J. McShane, March 7, 1960

We use a definition due to J. F. Adams:

DEFINITION. Let G be a compact Abelian group. Let S be a closed set
in N-dimensional Euclidean space and A a closed subset of S. Let m
be a non-negative integer. Then there is defined the Cech homology group
H,(S, 4; G); if A is empty this is written H.(S; G). Let K be the kernel
of the inclusion homomorphism ix: Hp1(4A; G)—Hnu1(S; G). Let L be
any subgroup of Hn1(A; G). Then we say that S is a surface of class
8¢ with boundary DL if K DL. Moreover if S is a surface in the above
sense but there are no closed proper subsets of S containing A which are
surfaces with boundary DL then S is said to be a proper surface. It
will be proved that every surface contains a proper surface.

We note in passing that when 4 is an m—1 sphere, dim (S) Em,
and G is the group of reals mod 1 this is equivalent to saying “S is
a surface with boundary 4 iff 4 is not a retract of S.”

We take area to be the Hausdorff spherical measure A™ .S.

MAIN THEOREM. The minimum area of surfaces of class 8¢ with
boundary DL is attained and if S is a proper surface of minimum area
then S will be locally Euclidean at all nonboundary points at which the
lower density does mot exceed one, that is at almost all nonboundary
points.

Moreover, when m =2, N=3 and G is the group of integers mod 2
the minimal surface is locally Euclidean at all nonboundary points.
If further the boundary 4 is polygonal the surface is a manifold.
The proofs (which are very long) run as follows:

Compactness is easy.

Lower semicontinuity in a suitable subsequence is proved by meth-
ods reminiscent of A. S. Besicovitch’s work here. Local Euclideaness
is proved via the following:

THEOREM. If Sy is a bounded set of points in Ey, and P is a point of
So such that to each R< Ry and each X &SoS(P, Ry) there corresponds
a m-plane g Y x through X such that

(A) SeS(X, R) C (r2_x, eR)S(X, R)
and
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(B) 2 x S(X, R) C (So, eR)S(X, R)
and Y, is an m-plane through P such that
(©) (22, €Ro) D So.

Then if €< 27208 there will exist a topological m-disk S such that
1 —
SoS<P, P Ro) C S CSeS(P, Ry).

Where S(x, 7) is a solid ball of centre x and radius » while (y, 8)
is the set of points lying within 8 of the set y.
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This note is a complement to [1]. We consider a commutative,
semi-simple and self-adjoint Banach algebra B and assume that B
has a unit element and is regular. By It we denote the space of max-
imal ideals of B and, applying the Gelfand representation, we con-
sider B as an algebra of continuous functions defined on . It is
obvious that if B is C(IM) (the algebra of all the continuous functions
on M) the idempotents in any quotient algebra of B are always
bounded. We prove here that this property characterizes C(I?) and
give an application of this result.

LeEMMA 1. Suppose that there exist constants K and Ky, K1 <1 such
that to any real, (resp. non-negative) function f& C(IM) there exisis an
element 1B such that ”f1” =<K Supuem If(M)l , f—/f1 is real (non-
negative) and

Suparem | f(M) = f(M)| < KiSupwem | j(ID] ;
then B=C(IN) and for any fEB||f|| S4K(1—K1)~* Supxem |F(M)].
Proor. Define by induction f,= (f— D*! fo)1; then f= D7 fa.



