SOLUTION OF THE PLATEAU PROBLEM FOR m-DIMENSIONAL SURFACES OF VARYING TOPOLOGICAL TYPE

BY E. R. REIFENBERG Communicated by E. J. McShane, March 7, 1960

We use a definition due to J. F. Adams:

DEFINITION. Let G be a compact Abelian group. Let S be a closed set in N-dimensional Euclidean space and A a closed subset of S. Let m be a non-negative integer. Then there is defined the Čech homology group $H_m(S, A; G)$; if A is empty this is written $H_m(S; G)$. Let K be the kernel of the inclusion homomorphism $i_*: H_{m-1}(A; G) \rightarrow H_{m-1}(S; G)$. Let L be any subgroup of $H_{m-1}(A; G)$. Then we say that S is a surface of class S^G with boundary $\supset L$ if $K \supset L$. Moreover if S is a surface in the above sense but there are no closed proper subsets of S containing A which are surfaces with boundary $\supset L$ then S is said to be a proper surface. It will be proved that every surface contains a proper surface.

We note in passing that when A is an m-1 sphere, dim $(S) \leq m$, and G is the group of reals mod 1 this is equivalent to saying "S is a surface with boundary A iff A is not a retract of S."

We take area to be the Hausdorff spherical measure $\Lambda^m S$.

MAIN THEOREM. The minimum area of surfaces of class S^G with boundary $\supset L$ is attained and if S is a proper surface of minimum area then S will be locally Euclidean at all nonboundary points at which the lower density does not exceed one, that is at almost all nonboundary points.

Moreover, when m=2, N=3 and G is the group of integers mod 2 the minimal surface is locally Euclidean at *all* nonboundary points. If further the boundary A is polygonal the surface is a manifold. The proofs (which are very long) run as follows:

Compactness is easy.

Lower semicontinuity in a suitable subsequence is proved by methods reminiscent of A. S. Besicovitch's work here. Local Euclideaness is proved via the following:

THEOREM. If S_0 is a bounded set of points in E_N , and P is a point of S_0 such that to each $R < R_0$ and each $X \in S_0S(P, R_0)$ there corresponds a m-plane $R \sum_X$ through X such that

(A)
$$S_0S(X, R) \subset (R \sum_X \epsilon R)S(X, R)$$

and

(B)
$${}_{R}\sum_{X}S(X,R)\subset(S_{0},\epsilon R)S(X,R)$$

and \sum is an m-plane through P such that

(C)
$$(\sum, \epsilon R_0) \supset S_0$$
.

Then if $\epsilon \leq 2^{-2000N^2}$ there will exist a topological m-disk \overline{S} such that

$$S_0S\left(P,\frac{1}{16}\ R_0\right)\subset \overline{S}\subset S_0S(P,R_0).$$

Where S(x, r) is a solid ball of centre x and radius r while (y, δ) is the set of points lying within δ of the set y.

OREGON STATE COLLEGE AND UNIVERSITY OF BRISTOL, ENGLAND

A CHARACTERIZATION OF THE ALGEBRA OF ALL CONTINUOUS FUNCTIONS ON A COMPACT HAUSDORFF SPACE

BY YITZHAK KATZNELSON

Communicated by Walter Rudin, March 23, 1960

This note is a complement to [1]. We consider a commutative, semi-simple and self-adjoint Banach algebra B and assume that B has a unit element and is regular. By \mathfrak{M} we denote the space of maximal ideals of B and, applying the Gelfand representation, we consider B as an algebra of continuous functions defined on \mathfrak{M} . It is obvious that if B is $C(\mathfrak{M})$ (the algebra of all the continuous functions on \mathfrak{M}) the idempotents in any quotient algebra of B are always bounded. We prove here that this property characterizes $C(\mathfrak{M})$ and give an application of this result.

LEMMA 1. Suppose that there exist constants K and K_1 , $K_1 < 1$ such that to any real, (resp. non-negative) function $f \in C(\mathfrak{M})$ there exists an element $f_1 \in B$ such that $||f_1|| \leq K \operatorname{Sup}_{M \in \mathfrak{M}} |f(M)|$, $f - f_1$ is real (non-negative) and

$$\operatorname{Sup}_{M \in \mathfrak{M}} | f(M) - f_1(M) | < K_1 \operatorname{Sup}_{M \in \mathfrak{M}} | f(M) |;$$

then $B = C(\mathfrak{M})$ and for any $f \in B||f|| \le 4K(1-K_1)^{-1} \operatorname{Sup}_{M \in \mathfrak{M}} |f(M)|$.

Proof. Define by induction $f_n = (f - \sum_{i=1}^{n-1} f_i)_1$; then $f = \sum_{i=1}^{\infty} f_{n}$.