(B)
$${}_{R}\sum_{X}S(X,R)\subset(S_{0},\epsilon R)S(X,R)$$

and \sum is an m-plane through P such that

(C)
$$(\sum, \epsilon R_0) \supset S_0$$
.

Then if $\epsilon \leq 2^{-2000N^2}$ there will exist a topological m-disk \overline{S} such that

$$S_0S\left(P,\frac{1}{16}\ R_0\right)\subset \overline{S}\subset S_0S(P,R_0).$$

Where S(x, r) is a solid ball of centre x and radius r while (y, δ) is the set of points lying within δ of the set y.

OREGON STATE COLLEGE AND UNIVERSITY OF BRISTOL, ENGLAND

A CHARACTERIZATION OF THE ALGEBRA OF ALL CONTINUOUS FUNCTIONS ON A COMPACT HAUSDORFF SPACE

BY YITZHAK KATZNELSON

Communicated by Walter Rudin, March 23, 1960

This note is a complement to [1]. We consider a commutative, semi-simple and self-adjoint Banach algebra B and assume that B has a unit element and is regular. By \mathfrak{M} we denote the space of maximal ideals of B and, applying the Gelfand representation, we consider B as an algebra of continuous functions defined on \mathfrak{M} . It is obvious that if B is $C(\mathfrak{M})$ (the algebra of all the continuous functions on \mathfrak{M}) the idempotents in any quotient algebra of B are always bounded. We prove here that this property characterizes $C(\mathfrak{M})$ and give an application of this result.

LEMMA 1. Suppose that there exist constants K and K_1 , $K_1 < 1$ such that to any real, (resp. non-negative) function $f \in C(\mathfrak{M})$ there exists an element $f_1 \in B$ such that $||f_1|| \leq K \sup_{M \in \mathfrak{M}} |f(M)|$, $f - f_1$ is real (non-negative) and

$$\operatorname{Sup}_{M \in \mathfrak{M}} | f(M) - f_1(M) | < K_1 \operatorname{Sup}_{M \in \mathfrak{M}} | f(M) |;$$

then $B = C(\mathfrak{M})$ and for any $f \in B||f|| \le 4K(1-K_1)^{-1} \operatorname{Sup}_{M \in \mathfrak{M}} |f(M)|$.

Proof. Define by induction $f_n = (f - \sum_{i=1}^{n-1} f_i)_1$; then $f = \sum_{i=1}^{\infty} f_{n}$.

LEMMA 2. Suppose that there exists a constant K_2 such that if h is an idempotent in any quotient algebra of B, $||h|| < K_2$; then $B = C(\mathfrak{M})$.

PROOF. The condition imposed in the statement of the lemma means that given two disjoint closed sets in \mathfrak{M} , there is an element $h \in B$ such that h(M) is 1 on one set, 0 on the other set and $||h|| \leq K_2$. We may also assume that h is non-negative since we may replace it by $|h|^2$, taking, if necessary, a bigger K_2 .

Let f be a non-negative function in $C(\mathfrak{M})$, define:

$$P_1 = \left\{ M; f(M) \ge \left(1 - \frac{1}{3K_2} \right) \operatorname{Sup} f \right\},$$

$$P_2 = \left\{ M; f(M) \le 1/2 \operatorname{Sup} f \right\},$$

and let h(M) be a non-negative element in B, of norm $\leq K_2$ which is identically 1 on P_1 and vanishes on P_2 . $f_1(M) = (2K_2)^{-1}$ Sup $f \cdot h(M)$ has the following properties: $||f_1|| \leq 1/2$ Sup f, $f - f_1$ is non-negative and Sup $(f - f_2) < (1 - (1/3K_2))$ Sup f and the lemma follows from Lemma 1 with K = 1/2 and $K_1 = 1 - (1/3K_2)$.

DEFINITION 1. B(P), where P is closed in \mathfrak{M} , is the algebra of restrictions of B to P or, equivalently, the quotient algebra of B by the kernel of P.

DEFINITION 2. We say that B is bounded in a set $V \subseteq \mathfrak{M}$ if there exists a constant K = K(V) such that whenever h is an idempotent in B(P) with $P \subseteq V$, ||h|| < K(V).

LEMMA 3. Let B be bounded in V_1 and in V_2 where V_1 and V_2 are open in \mathfrak{M} . Then B is bounded in every closed subset of $V_1 \cup V_2$.

PROOF. Let W be a closed subset of $V_1 \cup V_2$. We may assume $W = \mathfrak{M}$ (since we can confine our attention to B(W) instead of B). There exist open sets W_1 , W_2 satisfying: $\overline{W}_j \subset V_j$; $W_1 \cup W_2 = \mathfrak{M}$. Since B is regular it contains a function ϕ ,

$$\phi(M) = \begin{cases} 0 & M \in W_1, \\ 1 & M \in W_2. \end{cases}$$

If P is closed in \mathfrak{M} , $P = (P \cap \overline{W}_1) \cup (P \cap \overline{W}_2)$ and every idempotent in B(P) can be obtained as $\phi h_1 + (1-\phi)h_2$ where h_j is an idempotent in $B(P \cap \overline{W}_j)$ and the lemma follows.

DEFINITION 3. B is bounded at a maximal ideal M if there is a neighborhood V of M such that B is bounded in V.

LEMMA 4. Let P be compact in \mathfrak{M} ; if B is bounded at every $M \in P$, there exists an open $V \supseteq P$ such that B is bounded in V.

This is an obvious consequence of Lemma 3.

Lemma 5. If the idempotents of any quotient algebra of B are bounded, there is at most a finite number of points in \mathfrak{M} at which B is not bounded.

PROOF. If there were infinitely many there would exist a sequence $\{M_j\}_{j=1}^{\infty}$ with disjoint neighborhoods V_j such that B would not be bounded in V_j . There would be a closed $P_j \leq V_j$ such that $B(P_j)$ would contain an idempotent of norm $\geq j$.

If $P = UP_j$ then $B(\overline{P})$ would not have its idempotents bounded. The preceding proof yields actually more. We see that under the conditions of Lemma 5, there exists, for every family of disjoint open sets $\{V_{\alpha}\}$, a constant K such that $K(V_{\alpha}) \leq K$ for all but a finite number of α 's.

Let us now show that, under the condition of Lemma 5, B is bounded at every $M \in \mathfrak{M}$. We may obviously assume that there is only one point "in doubt" and denote it by M_0 .

There is a neighborhood V of M_0 and a constant K such that every idempotent in B(P), where $P \subset V$ and has M_0 as an isolated point, has norm less than K. (Use the same argument as in the proof of Lemma 5.) Using Lemmas 3, 4 and the assumption that M_0 was the only point at which B was not known to be bounded we see that we may take $V = \mathfrak{M}$. For every closed P that has M_0 as an isolated point B(P) = C(P) (Lemma 2) and there is a constant A, independent of P, such that the norm in B(P) is bounded by A times the Sup norm. This implies [1, the last lemma $]B = C(\mathfrak{M})$ and we thus proved

THEOREM. If the idempotents of any quotient algebra of B are bounded, $B = C(\mathfrak{M})$.

COROLLARY (For Terminology see [1]). If there is a function F(x) defined for -1 < x < 1 that operates in B and such that

$$F(0) = 0, \qquad \lim_{x \to 0} x^{-1}F(x) = \infty.$$

Then $B = C(\mathfrak{M})$.

PROOF. Use [1, Theorem 1] and the fact that F operates also in any quotient algebra of B.

REFERENCE

1. Y. Katznelson, Sur les algèbras dont les éléments non-négatifs admettent des racines carrées, Ann. Sci. Ecole Norm. Sup. vol. 77 (1960).

University of California, Berkeley, California