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A topological group G is said to be homotopy-abelian if the com-
mutator map of GXG into G is nulhomotopic. Examples can be
given? of non-compact Lie groups which are homotopy-abelian but
not abelian. The purpose of this note is to prove

THEOREM. 4 compact connected Lie group is homotopy-abelian only
if it is abelian.

COROLLARY. If a Lie group is homotopy-abelian, then its maximal
compact connected subgroup is abelian.

Our proof depends on the theory of [6]. Thus we consider the
Samelson “commutator” product® in the homotopy groups of G,
which is trivial when G is homotopy-abelian. The product of a Em,(G)
with BEm(G) is denoted by (&, B) Empt(G), where p, g=1. If his a
homomorphism of G into another topological group then

h*(d, ﬁ) = <h*a) h*ﬂ):

where k4 denotes the induced homomorphism. Note that %s is an
isomorphism if % is a covering map and p, ¢=2. Hence if two topo-
logical groups have a common universal covering group then their
higher homotopy groups are related by an isomorphism which is
compatible with the Samelson product. Let o m(G), where ¢=1,
denote the subset of g (G) consisting of elements (3, B), where
BEm,(G). We assert the following

LEMMA. Let G be a compact connected simple non-abelian Lie group
of dimension n and rank l. Then o w(G) #0, where ¢=2n/l1—3.

The proof is by application of (2.2) of [6]. We distinguish be-
tween the classical and exceptional cases, beginning with the latter.

Let G be one of the exceptional groups. Then #n/l=p, an odd prime
number, and G has no p-torsion (see [3]). The mod p cohomology of
G is an exterior algebra on a basis of / generators. There is one gener-
ator y in dimension ¢, while the remainder are of lower dimension. It
follows from Proposition 6 on page 291 of [8] that ¥ has a nontrivial

1 Research supported in part by U.S. Air Force Contract AF 49(638)-79.
2 Such as the 2-dimensional affine group (example suggested by H. Samelson).
3 The theory of the Samelson product is given in [5], for example.
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image under the homomorphism induced by some map of S? into
G. Thus y has nonzero index, in the sense of [6], with regard to some
element BE7,(G). By Borel’s theorem? the mod p cohomology of B,
the classifying space of G, is a polynomial algebra on a basis of /
generators which correspond under transgression to those of the ex-
terior algebra. The generator x corresponding to y has a nontrivial
image under the homomorphism induced by some map of S¢*! into
B. In the polynomial algebra let M denote the ideal generated by all
the basis elements except x. If 2 is such a generator then

dimz < dimx=¢+1=2(p — 1),

and so ®z2& M, where @ (s =0) denotes the Steenrod operator. Hence
®*MC M, by the Cartan product formula. This proves that ®x & M,
since by the Adem relation [1] we have

Cr20ly = (p — 1) x = (p — Dar & M.

Hence ®'x=cx? mod M, where ¢>0, and so ®l is significant with
regard to B, in the sense of [6]. Therefore (8, 8)0, by (2.2) of [6],
which proves the lemma when G is exceptional.

If G is not exceptional then G is locally-isomorphic to one of the
classical groups:

SU(I+ 1), SOo@2+1), Sp@), SO(2).
It is shown in §4 of [6] that each of
oran U + 1), oms-1S0(20 + 1), 0'7r4z_1Sp(l),

contains elements of odd order, and it follows from (18.2) of [4] that
the same is true of ¢ m4;5SO(2]) (I5£1). Furthermore

mSUQ+ 1) =~ U0+ 1), rz2),

under the injection, and so ¢ m2;11SU(I41) #0. Since the Samelson
product is an invariant of the structure class this completes the proof
of the lemma.

To deduce the theorem we recall that a compact connected Lie
group G is locally isomorphic to G’, say, where G’ is the direct product
of an abelian group T with various nonabelian simple groups. When
any of these latter are present there exists, by the lemma, some value
of ¢ such that o 7,(G") 520 and hence ¢ 7,(G) #0. Thus G'=T if G is
homotopy-abelian, and hence the theorem follows at once. A maximal

4 See (7.2) and (19.1) of [2].
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compact connected subgroup of a Lie group is a deformation retract
of the component of the identity [7], and so the corollary is an im-
mediate consequence of the theorem.
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