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1. Let C be the complex plane, S(C) the tribe of all Borel parts of 
C, B°°(C) the algebra of bounded complex-valued Borel measurable 
functions defined on C and Ml(C) the set of bounded complex Radon 
measures on C. Let E be a locally convex space1 which is separated, 
quasi-complete and barrelled. A family $=(mXtX>)xeE,xfeE' of meas
ures belonging to M 1(C) is called a spectral family on C if there exists 
a representation ƒ—»£%,/ of the algebra J5°°(C) into the algebra1 

L(E, E) mapping 1 onto I and satisfying the equations fcfdmXtX> 
= (Uç,fX, x') for a l l /G5°°(C) , x&E, x'QE'. By P% we denote the 
spectral measure defined on S(C) by the equations P$(cr) = U$><f><r 

((f>a is the characteristic function of <r). A linear mapping T of (the 
vector space) DTQ.E into E commutes with # if TU$,fZ) U$tfT for all 
feB«(Q. 

Let T be a linear mapping of DTC.E into E. We say that X £ C 
( = the one point compactification of C) belongs to the resolvent set 
r{T) of T if there is a neighborhood F of X such that : (i) zI— T is a 
one-to-one mapping of DT onto E and (zl — r ) _ 1 £ . L ( E , E) for each 
0 £ 7 - { o o J ; (Ü) { ( s i _ r ) - i | s e F - { o o } } i s a bounded part of 
L(E, £ ) . The set s p ( r ) = C-r(T) is the spectrum of T. If sp( r ) î> oo 
we say that T is regular. 

By an admissible set we mean a directed (for C ) set of closed parts 
of C whose union is C, having a countable cofinal part and containing 
with A C C every closed part of A. We denote below by Co and Q% 
the admissible set of all compact parts of C and all closed parts of C, 
respectively. Let 6 be an admissible set and T a closed linear map
ping of DTQE into E. We say that T is a Q-spectral operator if there 
is a spectral family # on C such tha t : 

(Di) T commutes with SF; 
(Du) TU$jÇ:L(E, E) for each/G-B°°(0 whose support is compact 

and belongs to 6; 
(Dm) sp(7V)Or- for every2 <r£e. 

1 £ barrelled means that every weakly bounded part of the dual space E' is equi-
continuous; E quasi-complete means that every bounded closed part of E is complete. 
L(E, E) is the algebra of all linear continuous mappings of E into E endowed with the 
topology of uniform convergence on the bounded parts of E. 

% For a set AC. C we denote by A" the closure of A in C. 
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(For <r£S(C) we denote by T<, the mapping x—>Tx of DTC\E9 into 
£ , , where E , = Pff(<r)(E).) 

THEOREM 1. Let 6 6e an admissible set and T a closed linear map
ping of DTQE into E. Then there is at most one spectral family on C 
satisfying (Di), (Du) and (Dm), 

For a (B-spectral operator T we shall denote by SFr the unique spec
tral family on C satisfying (Di), (Du) and (Dm). 

THEOREM 2. Let T be a (3-spectral operator. Then every A(E.L(E, E) 
commuting with T commutes with (Fr. 

Let now <B be an admissible set of parts of C and $=(mXtX>)xeE,x'eE> 
a spectral family on C. Consider the following property concerning 
$: P&). Given X£LE, * : ' £ £ ' there is <r(x, a;')EC such that the sup
ports of the measures mqx%X' are contained in <r(x, x') for all QÇzL(E, E) 
commuting with ïï. 

THEOREM 3. Let T be a Q-spectral operator and suppose that $T has 
property PC). Then s p ( Z V ) 0 ~ for all aEQi. 

THEOREM 4. Let T be a Q-spectral operator. Thenz: (4.1) S($T) 
Csp(P) . (4.2) If $T has property PC) then S($T)- = sp(T). 

2. We say that an operator SÇ:L(E, E) is scalar if there is a 
spectral family 3=(mx,X')xeE,X'<=E' on C of measures with compact 
support such that fczdmXtX> = (Sx, x') for all # £ P , x ' £ :P ' ; we write 
in this case 5 = U<$,z. An operator (?£Z,(P, E) is quasi-nilpotent if 
limn-*, | (Qnx, x')\ un = 0 for all xEE, * ' £ £ ' . 

THEOREM 5. (5.1) Let J T £ L ( £ , E) be a Go-spectral operator and sup
pose that $T has property P©o). Then T= U$TtZ+Q, where Q is quasi-
nilpotent, and T, UST.Z, Q commute. Further if T=S+R where S is 
scalar, R quasi-nilpotent and where T, S, R commute, then S= U$T,Z 

and R = Q. (5.2) Let $ be a spectral family on C of measures with com
pact support and Q a quasi-nilpotent operator commuting with #. Then 
T=U$,z+Q is a Qo-spectral operator and $ = $T-

3. In what follows we denote by <E> an arbitrary directed family of 
closed barrelled subspaces of E having the properties : (i) the set E0 

= U/?'G$ F is dense in E; (ii) a linear mapping T of E0 into Po verify
ing the relations T(F)QF for all P£<£ is continuous if TF(TF is the 
mapping x—>Tx of F into F) is continuous for all PE<&; (iii) given 

8 We denote by S(£Fr) the closure in C of the union of the supports of the measures 
belonging to ^r. 
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# £ E and x'EE' there is #oGE0 verifying the equations {Tx, x') 
= (Txo, x') for each TEL(E, E) such that T(F)CF for all E G $ . 
Given 3> let L*(E, E) be the set of all TGL(E, E) such that : (3) T{F) 
CFior all E G $ ; (jj) TF is regular for all E G $ and s p ( 7 » C s p ( 2 > 0 
C s p ( r ) if F', E " G $ , F'CF". For T&Li(E, E) we write A(T) 
= Uj?(E*sp(7». 

THEOREM 6. /ƒ T£L*(E, E) then sp(T)=A(T)~. 

THEOREM 7. If !TG£$(E, E) then there exists a unique continuous 
representation f-+f {T) of* H(A(T)) into L(E, E) having the properties: 
(7.1) l(T) = I; (7.2) z(T) = T. Further f(T) £ ! $ ( £ , E) and 
s p ( / ( r ) ) =f(A(T))~ (f is an element in the equivalence class f). 

Let TEL(E, E) be a Co-spectral operator. Suppose that $T 
= (^,x')xeB,x'€B' has property Pe 0 ) and let<£= (E^eg, , ) . T h e n * has 
the properties (i), (ii), (iii) and r G £ * ( E , E). Moreover: 

THEOREM 8. The operator f(T) is ^-spectral f or each f'EH(A (T)) 
and 

(1) (f(T)x, *') = Z - f f»drnQ'ZtX,, for x G E, *' G E', 

where Q is the quasi-nilpotent part of T. The series (1) converges ab
solutely and uniformly f or given x £ E and x'Ç^A {A is an arbitrary 
equicontinuous part of E'). 

4. Let 6 be an admissible set, ((r(n)) an increasing sequence of 
compact parts belonging to 6 whose union is C, T: DT—*E a C-
spectral operator, 3 rr= (w^^Oxe^.^e^ and E00 = {JEff(n). Let T* be 
the restriction of T to E^C.DT and $% = (m^x^xeE^^eE^ Here E» is 
endowed with the topology, inductive limit of the topologies of the 
subspaces E9^n) of E, and, for ^ G E ^ C E * , and x'ÇzE'*, m£s'=m*,„' 
if / GE' is such that x'E<n) =yEff(ny 

THEOREM 9. (9.1) T* is a Qi-spectral operator, ST^^T and $Tao 

has property P 2 ) (2 is the smallest admissible set containing (<r(n))). 
(9.2) Tis the closure of Tw. (9.3) sp(rc0) =5(3 r

r )" . 

Further ^4G^(E, E) commutes with T if and only if ^ ( E ^ C E * , 
and A E^ commutes with 7\o. Also T is "scalar" if and only if T«> is 
scalar; if T is "scalar" and ƒ is such that ^oo/G-B^CO for all n then 

/(r)--/(r«). 
4 For the definition of H(A), A (ZC (endowed with the Van Hove topology")» see 

for instance [5] (where A is supposed compact) and [4, pp. 255-256]. 
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5. The subject matter of this note has been suggested by [2] and 
by [ l ; 3] . The Theorems 1, 2, 5 and 8 are essentially generalizations 
of the corresponding results in [2; 3] . The results of paragraph 4 
show some of the relations between the unbounded spectral operators 
defined in [l ] and the (everywhere denned continuous) spectral oper
ators denned above. The definition of the spectrum and of the quasi-
nilpotent operator were suggested by definitions given in [5; 6] , 
respectively. 
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