RESEARCH PROBLEMS

1. Richard Bellman: Differential equations.

It was shown by Hermite and others that the study of the doublyperiodic solutions of a linear differential equation whose coefficients are analytic doubly-periodic functions of a complex variable is considerably simpler in many ways than the study of the periodic solutions of a linear differential equation with periodic coefficients.

One should in this way be able to obtain excellent approximations to the solution of the Mathieu equation

$$
u^{\prime \prime}+(a+b \cos 2 z) u=0
$$

by considering it as a limiting form of the solution of

$$
u^{\prime \prime}+(a+b \operatorname{cn} 2 z) u=0
$$

as the modulus k^{2} tends to zero.
Are there doubly-periodic solutions of the inhomogeneous Van der Pol equation

$$
u^{\prime \prime}+\lambda\left(u^{2}-1\right) u^{\prime}+u=a \mathrm{cn} \omega z,
$$

and can these be used to furnish approximations to the solution of the equation

$$
u^{\prime \prime}+\lambda\left(u^{2}-1\right) u^{\prime}+u=a \cos \omega z ?
$$

(Received February 2, 1961.)

2. Richard Bellman: Asymptotic control theory.

Consider the problem of determining the minimum of

$$
J(u)=\int_{0}^{T}\left(u^{\prime 2}+u^{2}+u^{4}\right) d t
$$

over all functions $u(t)$ for which $u(0)=c$. Write $f(c, T)=\min _{u} J(u)$. It follows from the functional equation approach of dynamic programming that $f(c, T)$ satisfies the nonlinear partial differential equation

$$
f_{T}=\min _{v}\left[v^{2}+c^{2}+c^{4}+v f_{c}\right] .
$$

Since $f(c, T)$ is monotone increasing in T and is uniformly bounded (as we see using the trial function

$$
u_{0}=\frac{c e^{t}}{1+e^{2 T}}+\frac{c e^{2 T-t}}{1+e^{2 T}}
$$

the solution of the corresponding problem where the u^{4} term is not present), we expect the limit function $f(c)=\lim _{T \rightarrow \infty} f(c, T)$ to satisfy the ordinary differential equation

$$
0=\min _{v}\left[v^{2}+c^{2}+c^{4}+v_{J}^{\prime}(c)\right]
$$

Establish this and obtain an asymptotic expansion for $f(c, T)$ and for the minimizing function u valid as $T \rightarrow \infty$. Generalize by obtaining corresponding results for the minimum of

$$
\begin{aligned}
J\left(u_{1}, u_{2}, \cdots, u_{N}\right)= & \int_{0}^{T}\left[Q\left(u_{1}, u_{2}, \cdots, u_{N}, u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{N}^{\prime}\right)\right. \\
& \left.+P\left(u_{1}, u_{2}, \cdots, u_{N}\right)\right] d t
\end{aligned}
$$

where Q is a positive definite quadratic form in u_{i} and u_{i}^{\prime} and P is a positive polynomial of higher degree.

Results of this type are important in the modern theory of control processes. (Received February 2, 1961.)

