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Let P be the direct product of countably many copies of the inte
gers Z, i.e., the group of all sequences x=(xi, x2i • • • ) of integers 
with term-wise addition; and, for each natural number n, let 5n be 
the element in P whose nth coordinate is 1 and whose other coordi
nates are 0. Lo§ calls a torsion-free abelian group A slender if every 
homomorphism of P into A sends all but a finite number of the 5n 

into 0. The concept first appeared in [3]. E. S^siada [ó] has shown 
that all reduced countable groups are slender. In this note I give a 
new description of the slender groups and apply it to show that cer
tain classes of groups are slender. All groups in this paper are abelian. 

A group is slender if and only if every homomorphic image of P 
in it is slender. I t is therefore desirable to know the structure of the 
homomorphic images of P. 

THEOREM 1. A homomorphic image of P is the direct sum of a divisi
ble group, a cotorsion group, and a group which is the direct product of 
at most countably many copies of Z. 

A group A is a cotorsion group if it is reduced and is a direct sum-
mand of every group E containing it such that E/A is torsion-free. 
These groups were introduced by Harrison [4]. A special case of 
Theorem 1 (namely the structure of P/S where 5 is the direct sum) 
was proved by S. Balcerzyk [2]. 

A torsion-free cotorsion group contains a copy of the £-adic integers 
for some prime p. For each prime p the £-adic integers are not slender: 
the homomorphism X • / w - i X% pl sends ô* into p\ Theorem 1 and the 
remark preceding it then give 

THEOREM 2. A torsion-free group is slender if and only if it is reduced, 
contains no copy of the p-adic integers for any prime p, and contains no 
copy of P . 

A group is called Ni-free if every at most countable subgroup is 
free. 

COROLLARY 3. An #i-free group is slender if and only if it contains 
no copy of P. 

1 This work was supported by the National Science Foundation research contract 
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A group A is a B-group if Ext(-4, T) = 0 for every torsion group T 
and a W-group if Ext(-4, Z) = 0 . The names for these classes of groups 
are due to J. J. Rotman. All J3-groups and W-groups are tti-free. 
Baer showed in [ l ] that P is not a 5-group. I t is also true that P is 
not a W^-group. Since every subgroup of a B-group (W-group) is a 
5-group (W-group) we have 

THEOREM 4. Every B-group and every W-group is slender. 

This theorem was first proved (with an additional condition on the 
5-groups) by Rotman [5], 

The above scheme can be applied to various other classes of groups, 
for example the torsion-free groups such that Ext(-4, Z) is countable. 
The property is hereditary, every such group is fc^i-free, and P is not 
one of them. The structure of Ext(P, Z) is completely known. Let Q 
be the additive group of rational numbers and c the cardinal of the 
continuum. 

THEOREM 5. Ext(P, Z) is the direct sum of 2° copies of Q and 2° 
copies of Q/Z. 
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