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1. Many problems in probability theory, when properly formu­
lated, appear as problems in the theory of convergence of stochastic 
processes. The need for such a theory was demonstrated by the early 
results of Doob [4], Donsker [5] and others. In their fundamental 
papers, LeCam [10] and Prohorov [ l l ] developed several aspects of 
such a theory. Their work was based on, and was a development of, 
the earlier work of A. D. Alexandrov [ l ] and Kolmogorov [9]. How­
ever, several questions which naturally arise were either not discussed 
or discussed only under unnecessary restrictions. The following re­
marks contain an outline of a general theory of measures on topologi­
cal spaces. Only the statements and the appropriate formulations of 
the main results are given. The detailed proofs will be published else­
where. 

2. Let X be a topological space and C{X) the Banach space of 
bounded real-valued continuous functions on X. S is the smallest 
cr-field of subsets of X with respect to which all the elements of C(X) 
are measurable. By measure we mean probability measures defined 
on S and these arise, in the classical manner following F. Riesz, from 
linear functionals 0 defined on C(X). Given a nonnegative linear func­
tional <t> on C(X) with 0(1) = 1, we have the representation 

(1) *(ƒ) = f ƒ** 
J x 

for all ƒ G C(X) with a (unique) measure ju, provided <£ is a-sniooth, 
i.e. for any sequence {fn} of elements of C(X), J, 0 pointwise over 
Xy $(ƒ»*)—*0. The set of all measures is denoted by M(X), or simply 
by My when there is no doubt as to what X is. 

M is a subset of the dual-space of C(X) and as such inherits the 
weak topology of the dual of C(X). Our main concern is with the 
structure of this topology over M and its subsets. The two main 
problems examined are the metrizability of M and the structure of 
compact subsets of M. 

1 This work was done during 1958-1959 while the author was in the Indian Sta­
tistical Institute, Calcutta, but due to diverse reasons the announcement was delayed 
up to now. 
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3. We begin with a classification of measures. A measure /* is called 
T-sntooth, if 

(2) f / i * i - * 0 
J x 

for every net2 {ƒ;} I 0 pointwise over X. The set of all rsmooth meas­
ures is denoted by MT. A measure ju is called tight if 

f •* 
is continuous on the unit sphere of C(X) with respect to the topology 
of uniform convergence on compacta. The set of tight measures on 
X is denoted by Mt. Clearly Mt(X)CMT{X)CM(X). 

THEOREM 1. In order that a measure JJL be r-smooth it is sufficient 
that there exists a closed Lindelof2 subset C of X such that yi*(X — C) = 0, 
jit* denoting the inner measure induced by fx. If X is paracompactf this 
condition is necessary and sufficient. 

In particular, if X is a metric space, \x is r-smooth if and only if 
there exists a closed separable subset C of X such that ii(X — C) = 0. 

I t is interesting to examine the conditions under which we have 
the relation 

M « Mr. 

From Theorem 1 it follows at once that this is the case as soon as X 
is a separable metric space. 

THEOREM 2. If X is a metric space, M(X) = MT(X) if and only if 
M(X0) = MT(XQ) for every closed discrete sub space X0 of X. 

In other words M(X) = MT(X) if and only if the only measures de­
fined on closed discrete subspaces of X are those with mass concen­
trated on a countable set. I t is well known [2, p. 187] that this ques­
tion is intimately related with some questions in the theory of sets. 
In particular, it follows, on assuming the continuum hypothesis, that 
M(X) = MT(X) for any metric space of cardinality less than or equal 
to that of the continuum. 

THEOREM 3. A measure JJL is tight if and only if f or each e > 0 there 
exists a compact set KtQX such that 

H*(X - K.) < e. 

2 See [8 ] for this and other terminology concerning topological spaces. 
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If X is a complete metric space, Mt = MT. In particular if X is a 
separable and complete metric space, M—Mr~Mt. 

4. The questions of metrizability and compactness in M were first 
examined by P. Levy in the case when X is the real line (cf. for in­
stance [6]) who proved that M{X) in this case is a separable and 
complete3 metric space. When X is an arbitrary topological space, 
an examination of the imbedding 

(3) y:x->Vx, 

which sends x£X into the measure \xx concentrated at x, reveals that 
for the metrizability of the space M(X) one must have (i) X is 
metrizable and (ii) M{X) = MT(X). In view of this and Theorem 2 
it is thus natural to at tempt to prove that MT is metrizable whenever 
X is. We have 

THEOREM 4. If X is a metric space, MT(X) is metrizable. MT(X) is 
metrizable as a complete metric space when and only when X is a com­
plete metric space. 

For the completeness part we note that the imbedding (3) of X 
into MT(X) sends X onto a closed subset of MT(X). On the other 
hand, if X is complete, we introduce fiX, its Stone-Cech compactifica-
tion (X(Z(3X). By a general theorem due to Cech [3], X is a Gs in 
PX. Any measure JJL on X gives rise to a measure /z on (SX for which 
fl(J3X—X) = 0. I t can be shown that /z is regular (in the sense of [7, 
p. 224]) if and only if II<ELMT(X) and that the regular measures on f$X 
are precisely the r-smooth measures on (iX. We thus obtain an im­
bedding of MT(X) into MT(J3X). I t can further be proved that this 
is a homeomorphism and that the image of MT(X) is a G& in MT(PX) 
(which is a compact Hausdorff space incidentally). Cech's theorem 
now assures us that MT(X) can be made complete under an equivalent 
metric. 

We proceed next to a study of the compact subsets of M. In view of 
the nature of this communication we shall restrict ourselves to the 
case of greatest interest from the point of view of applications. A set 
DQM(X) is called tight iff for each e > 0 there exists a compact set 
2£«C^such that 

(4) Sup M*(X - K.) < €, 

I t is clear that only subsets of Mt{X) can be tight sets; further, 

* Completeness, here as elsewhere, is always completeness under some equivalent 
metric. 
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it can be proved that a set DQMt is tight if and only if the corre­
sponding set of linear functionals are equicontinuous at 0 in the 
topology (over the unit sphere of C(X)) of uniform convergence on 
compacta. The following theorem is easy to prove. 

THEOREM 5. If D is tight, then DCMt and is compact. 

In [9] Kolmogorov raised the interesting question as to whether 
the converse of Theorem 5 is true. That this is so, when X is a separa­
ble and complete metric space, was proved by Prohorov [ l l ] . The 
following theorem settles the question when X is an arbitrary metric 
space. 

THEOREM 6. If X is a metric space and D is a compact subset of Mt, 
then D is a tight set. 

In view of well-known Ascoli theorems [8, p. 233 ] the proof proceeds 
by showing that the map 

of Ci(X)XD into the reals (Ci(X) being the unit sphere of X under 
the topology of uniform convergence on compacta) is continuous. 
We note now that D is a metric space (Theorem 4) and hence con­
vergence on D is of a sequential nature. The desired continuity is now 
obtained by using a theorem of LeCam [lO] (which is essentially 
Theorem 6 for the case when D consists of a convergent sequence 
plus its limit point). 

I t might be remarked that when X is not a metric space there are 
examples of compact subsets D of Mt which are not tight. 

5. Applications to stochastic processes arise when we regard a 
stochastic process as a measure on a topological space X of functions. 
If 

(5) f, £i, fa, • • • 

is a sequence of stochastic processes, the convergence of £n, as n—> oo f 

to £ then implies the convergence of the distribution of g [£n] to that of 
g[%] for all continuous functions g on X. Typical problems are those 
in which X is a separable Banach space and £ is a random variable 
with values in X which is normally distributed i.e. for any bounded 
linear functional x* on X, #*(£) is normally distributed. We then con­
sider the central limit problem. Let 

(6) Vh V2, ' ' ' 
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be independent identically distributed -X"-valued random variables 
with E(rji) s O . If 

1 
£n *= (771+ • • • + Vn), 

n 
under what conditions do the distributions of £n converge in X? When 
X is a Hubert space, Prohorov proved [ l l ] that £ | |T7 ; | | 2 < 00 was a 
necessary and sufficient condition. The general problem when X is 
an arbitrary separable Banach space remains unsolved, but the fol­
lowing theorem is one of several special results: 

THEOREM 7. If X is the space h (of all sequences 

a = (ah a2, • • • ) 

with ^2n \an\ < °o for which ||a|| = ]T)n \an\)f then 

(7) Z [ V a r ^ n ) ] 1 / 2 < -
n 

is a necessary and sufficient condition that £n should converge in dis-
tribution. 

Here 7?in) denotes the nth component of r\\ and Var denotes vari­

ance. 

REFERENCES 

1. A. D. Alexandrov, Additive set functions in abstract spaces, Mat. Sb. vol. 8 
(1940) pp. 307-348; vol. 9 (1941) pp. 563-628; vol. 13 (1943) pp. 169-238. 

2. G. Birkhoff, Lattice theory, Rev. éd., Amer. Math. Soc. Colloquium Pub­
lications, vol. 25, 1948. 

3. E. Cech, On bicompact spaces, Ann. of Math. vol. 38 (1937) pp. 823-844. 
4. J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. 

Statist, vol. 20 (1949) pp. 393-403. 
5. M. Donsker, Justification and extension of Doob*s heuristic approach to the 

Kolmogorov-Smirnov theorems, Ann. Math. Statist, vol. 23 (1952) pp. 277-281. 
6. B. V. Gnedenko and A. N. Kolmogorov, Limit distributions f or sums of inde­

pendent random variables, Reading, Addison-Wesley, 1954. 
7. P. R. Halmos, Measure theory, Princeton, Van Nostrand, 1950. 
8. J. L. Kelley, General topology, Princeton, Van Nostrand, 1955. 
9. A. N. Kolmogorov and Yu. V. Prohorov, Zufdllige Funktionen und Grenz-

verteilungssatze, Bericht über die Tagung Wahrscheinlichkeitsrechnung und mathe­
matische Statistik, Berlin, Deutscher Verlag der Wissenschaften, 1954, pp. 113-126. 

10. L. LeCam, Convergence in distribution of stochastic processes, Univ. California 
Publ. Statist, vol. 2 (1957) pp. 207-236. 

11. Yu. V. Prohorov, Convergence of random processes and limit theorems in prob­
ability theory, Teor. Veroyatnost. i Primenen. vol. 1 (1956) pp. 177-238. 

THE UNIVERSITY OF WASHINGTON 


