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1. A general theory of surface area, [ l ; 2 ] , exists for the non-
parametric case. Thus, area is defined for all measurable ƒ on the unit 
square Q = IXJ. The area functional is lower semi-continuous with 
respect to almost everywhere convergence and agrees with the 
Lebesgue area for continuous ƒ. On the other hand, for continuous 
parametric mappings T of the closed unit square Q into euclidean 
3-space E$} Lebesgue area is not lower semi-continuous with respect 
to almost everywhere convergence nor even, as C. J. Neugebauer has 
shown, [3], with respect to pointwise convergence. 

I t thus appears that a theory of parametric surface area must be 
restricted to surfaces which cannot deviate too far from the ones given 
by continuous mappings. In this paper, we develop the beginnings of 
a theory for a class of surfaces which we call linearly continuous. 

2. Let ƒ be a real function defined on Q and, for every u> let fu be 
defined by fu(v) =f(u, v) and let ƒ„ be defined similarly. Then ƒ is 
linearly continuous if fu is continuous for almost all u and fv is con
tinuous for almost all v. A mapping T:x = x(u, v), y — y{u, v), 
z = z(u, v) of Q into Ez is linearly continuous if x, y, z are linearly con
tinuous. 

A sequence {fn} of functions converges linearly to a function ƒ if 
(fn)u converges uniformly to fu for almost all u, and (fn)v converges 
uniformly t o / , for almost all v. A sequence Tn: x = xn(u, v),y = yn(u, v), 
z — Zniu, v) converges linearly to a mapping T: x — x{u, v), y~y{u, v), 
z — z{u,v)\l {xn}, {yn}> {zn} converge linearly to x, y, z, respectively. 

Let P be the set of quasi linear mappings from Q into Ez. For 
P,qeQ let 

d(p, q) = inf[£: there are sets Ak C I, Bk C / , 

m(Ak) > 1 — k, m(Bk) > 1 — k, and | p(u, v) — q(u, v)\ < k 

on (Ak X J) U (ƒ X Bk)l 

It is easy to verify that P is a metric space and that {pn} converges 
to p in this space if and only if it converges linearly. Let E be the 
elementary area functional on P . I t is not hard to prove 
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THEOREM 1. E is lower semi-continuous on P . In other words, if 
\pn] converges linearly to p then lim inf E(pn) ^E(p). 

By the Fréchet extension theorem, E is extended to a lower semi-
continuous functional $ on the completion <£ of P. 

THEOREM 2. The completion £ of P is the space of linearly continuous 
mappings with the metric corresponding (as above) to linear conver
gence. 

3. I t is obvious that for every continuous mapping T, A(T) ^$(T) 
where A (T) is the Lebesgue area. The inverse inequality holds so that 
the functional <3> constitutes a legitimate extension of Lebesgue area 
to substantially wider class of mappings than the continuous ones. We 
outline the proof. 

For a continuous T:x = x(u, v), y = y(u, v), z = z(u, v), the lower 
area V(T) is defined as follows: 

Let T\:y = y(u, v), z — z(u, v), T2:x = x(u1 v), z — z(u, v), and 
r 3 : x = x(u, v), y = y(u1 v) be the associated flat mappings. For every 
simple polygonal region P in Q°, let 

vl(P) = ƒ I 0(£, 7\P*) | , 

where the integration is over the yz plane, and 0(£, 7YP*) is the topo
logical index of TiP* a t J (A0 and A* are the interior and boundary, 
respectively, of a set A). Define v2(P) and vz(P), similarly, and let 

v(P) = hop)2 + v2(py + *3(P)2]1/2. 

Let 7T=(Pi, • • • , Pn) be a finite set of pair-wise disjoint simple 
polygonal regions in Q° and 

i=l 

Finally, let 

V(T) = sup[p(x):ir]. 

Cesari has shown (e.g. [4]) that A (T) = V(T) for every continuous 
T. 

The distance between 2 sets A and B is defined by 

d(A, B) = sup[J(x, B): x 6 A] + sup[d(y, A): y G B]. 

With this metric, the set a of simple polygonal regions is a separable 
metric space. Let ft (Zee be dense in a and 
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Vfi = sup[fl(x): T C P]* 

LEMMA 1. V0(T) = V(T). 

Now, let {Tn} be a sequence of continuous mappings which con
verges linearly to a continuous mapping T. Let y be the set of simple 
polygonal regions whose boundaries consist of line segments parallel 
to the coordinate axes for which T and Tn, n = 1, 2, • • • are continu
ous and on each of which {Tn} converges uniformly to T. For each 
TTCT, lim inf V(TT, Tn) !^V(T, T). Since y is dense in a, it follows that 
lim inf V(Tn) ^V(T). This proves 

THEOREM 3. A{T) is lower semi-continuous with respect to linear con
vergence on the set of continuous mappings. 

COROLLARY 1. A(T) =<£(r) for every continuous T. 

PROOF. For every sequence {pn} of quasi-linear mappings con
verging linearly to T, lim inf E(Pn)^A{T). Choose {pn} so that 
lim E(pn)=$(T). T h e n ^ l ( r ) ^ * ( r ) , 

4. A set S will be called negligible if SC.Z1XZ2 where Z\ and Z2 

have linear measure zero. Kolmogoroff's principle holds in the follow
ing form. 

THEOREM 4. If T\ and T2 are linearly continuous mappings from 
Q into £3 and if for every pair of points £, rj not belonging to a negligible 
set 

| r r f - T1V\ ^ {To- ZV11, 

t h e n ^ ( r ! ) g * ( r 2 ) . 

5. A real function ƒ on Q is BVC if for almost all u and almost all 
v, fu and fv are equivalent to functions of bounded variation and the 
corresponding variation functions are summable. ƒ is ACE if for al
most all u and almost all v, fu and ƒ„ are equivalent to absolutely con
tinuous functions. 

For functions which are BVT and ACT it is a simple known fact 
that the integral means commute with the partial derivatives. This 
also holds almost everywhere for functions which are BVC and ACE. 
Using this fact and the fact, [5], that if ƒ is BVC and linearly con
tinuous then the integral means of ƒ converge linearly to ƒ, the proof 
of the following generalization of a theorem of Morrey, [4], may be 
obtained in somewhat standard fashion. The generalization is in two 
directions. Instead of holding only for conjugate Lebesgue spaces, the 
theorem holds for conjugate Köthe spaces, [6; 7], and the theorem 
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holds for linearly continuous mappings rather than just for continu
ous ones. 

THEOREM 5. If the functions x, y, z of a linearly continuous T are 
B VC and ACE and if the pairs of partial derivatives (xu, yv), (xv, yu), 
(xu, zv), (xv, Zu), (yu, Zv), (yVl zu) belong to conjugate Köthe spaces, the 
area $(T) is given by the formula 

*(T) = fJdudv 

where J= [J^+Jl+Jl]112 and J i , J2, Jz are the jacobians of T\, T2, Tdt 

respectively. 

6. We define an equivalence relation for linearly continuous map
pings. T is equivalent to T'(T~Tf) if there are sequences {pn} and 
{qn} of quasi linear mappings such that, for every w, pn~([n in the 
Lebesgue sense and {pn) converges linearly to T, \qn] converges 
linearly to T'. 

The following simple facts hold : 
(a) The relation " « " has the properties of an equivalence relation. 
(b) If T and T' are continuous and Fréchet equivalent then T^T'. 
(c) If r « T' then * ( D = * ( r ) . 
We refer to an equivalence class as a surface and to its elements as 

representations. 
D mappings, the Dirichlet integral, and almost conformai map

pings are defined as for the continuous case, [4], with BVT and ACT 
replaced by BVC and ACE. 

We say that a mapping T is simple if there is a negligible set 5 
such that É G G - S , rçeG-S, £3*17 implies T(£)*T(n). 

The following holds: 

THEOREM 6. If Tf is a linearly continuous simple mapping and 
$ ( r ' ) < °°, the surface given by T' has a representation T, withjacobian 
Jy such that 

* ( r ) = $ ( r ) = f J dudv. 

COROLLARY. Every linearly continuous nonparametric surface of fi
nite area has a parametric representation T, with jacobian J, such that 

*(T) = I Jdudv 
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