RESEARCH PROBLEM

3. Albert Wilansky: An elementary inequality.

Given $\sum |b_k| < \infty$, must there exist a constant M such that whenever $\{x_n\}$ is a convergent sequence satisfying $|\sum_{k=1}^{n-1} b_k x_k + x_{n-1} + x_n| < 1$ for all n, then $|\lim x_n| < M$?

Remarks. This asks, of course whether lim is continuous in a certain topology. The result is true if the term x_{n-1} is omitted (Mazur, see [1]), it is also true if all $b_n = 0$ [since lim $x_n = (1/2) \lim(x_{n-1}+x_n)$].

The given transform is Bx+2Ax where $A_n(x) = (1/2)(x_{n-1}+x_n)$, $B_n(x) = \sum_{k=1}^{n-1} b_k x_k$, B is in the radical of the Banach Algebra of triangular conservative matrices, A is regular. See [1; 3].

If the answer to the question is no, this will provide a second example (the first is due to Zeller, see [2]), of a coregular matrix with no equivalent regular matrix.

References

1. E. K. Dorff and A. Wilansky, *Remarks on summability*, especially Remark 3, J. London Math. Soc. vol. 35 (1960) p. 235.

2. A. Wilansky, Summability; the inset, the basis in summability space, Duke Math. J. vol. 19 (1952) especially p. 657.

3. A. Wilansky and K. Zeller, Banach algebra and summability, Illinois J. Math. vol. 2 (1958) pp. 378-385.

(Received April 17, 1961.)