RESEARCH PROBLEM

3. Albert Wilansky: An elementary inequality.

Given $\sum\left|b_{k}\right|<\infty$, must there exist a constant M such that whenever $\left\{x_{n}\right\}$ is a convergent sequence satisfying $\left|\sum_{k=1}^{n-1} b_{k} x_{k}+x_{n-1}+x_{n}\right|$ <1 for all n, then $\left|\lim x_{n}\right|<M$?

Remarks. This asks, of course whether lim is continuous in a certain topology. The result is true if the term x_{n-1} is omitted (Mazur, see [1]), it is also true if all $b_{n}=0\left[\right.$ since $\left.\lim x_{n}=(1 / 2) \lim \left(x_{n-1}+x_{n}\right)\right]$.

The given transform is $B x+2 A x$ where $A_{n}(x)=(1 / 2)\left(x_{n-1}+x_{n}\right)$, $B_{n}(x)=\sum_{k=1}^{n-1} b_{k} x_{k}, B$ is in the radical of the Banach Algebra of triangular conservative matrices, A is regular. See $[1 ; 3]$.

If the answer to the question is no, this will provide a second example (the first is due to Zeller, see [2]), of a coregular matrix with no equivalent regular matrix.

References

1. E. K. Dorff and A. Wilansky, Remarks on summability, especially Remark 3, J. London Math. Soc. vol. 35 (1960) p. 235.
2. A. Wilansky, Summability; the inset, the basis in summability space, Duke Math. J. vol. 19 (1952) especially p. 657.
3. A. Wilansky and K. Zeller, Banach algebra and summability, Illinois J. Math. vol. 2 (1958) pp. 378-385.
(Received April 17, 1961.)
