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Let £1, £2, • • • , £n, • • • , be a sequence of independent and identi
cally distributed random vectors in Rk with finite second order 
moments. Let 7]n=Ui+ • • • +fn)w~1/2 and let Pn(A) =Pfo«G-4] . 
Let rj denote a random vector in Rk which is normally distributed 
and whose moments of the first two orders are identical with those 
of £1 and let P(A) =P[rjÇzA ]. Then, by the central limit theorem in 
Rk, Pn weakly converges to P. A question that arises naturally here 
is an investigation of the error of approximation Pn — P. This prob
lem has been thoroughly investigated in the case k = l (cf. [3; 4; 5] 
and also the survey [ô] where a complete set of references is given). 
For k>l, Bergström [l ; 2] obtained bounds on the error 

sup I Fn(x) - $(*) I 
xERk 

where Fn, $ are the distribution functions of rjn and 77 respectively. 
Esseen [5] gave similar bounds for the error \Pn(A) — P(A)\, when 
A is a sphere with centre at the origin. The object of this study is to 
investigate the error An(A) = Pn(A) — P(A) for a very wide class of 
sets—namely the class of all convex subsets of Rk. 

2. Notation and preliminaries. Let £i = (£il), • • • , £ifc)). We sup
pose that E^ = 0 for 7 = 1, 2, • • • , k, and that the variance co-
variance matrix of £1, to be denoted by V, is nonsingular. We use the 
following notation for denoting the moments and cumulants of £r. 

the cumulant of order (si, s2f • • • , Sk) will be denoted by X?«XJ- • • • 
•X|*. L e t / ( 0 denote the characteristic function of £1. Then the char
acteristic function of t]n is [f(tn~l(2)]n. Let the polynomials Pj(w) in 
the vector w=(wi, • • • , wk) be defined by the formal identity: 

(1) exp i £ — (X1W1 + • • • + X*w*)'»-(*-2)/4 = È tr»*Pj(w). 

(Here the X's represent the cumulants of £1.) Let the functions 
P}{—<t>)i Pj(—$) for7 = 0, 1, • • • , be defined as follows: 
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(2) Pj( - <t>) (x) = (2a-)-* f Pjiit) exp ï-it'-x /' F" 1 / ! dt 

and 

(3) P , ( - $ ) ( * ) = f Pj(-4>)(y)dyi • • • dyk. 

A random vector £ in P& is said to be a lattice vector if there is a 
lattice £ of points in Rk such that P[£G<£] = 1. The lattice <£ is said 
to be minimal if there is no proper sublattice <£i of £ such that 
P [ £ £ £ i ] = 1. If £i is a lattice vector we may always suppose without 
loss of generality that the minimal lattice in which £i is concentrated 
is £o= [a+m; where a is some fixed vector and m is an arbitrary 
vector such that m = (mi, • • • , mk) where each my is an integer posi
tive, negative or zero]. If £i is a lattice vector then we define 

(4) pn(z) = P f c + • • - + £w = z] = P[Vn = ztr1'*]. 

3. Theorems. 

THEOREM 1. Suppose that fii<<x> and that the variance covariance 
matrix of £i is the identity matrix. Then 

(5) | Pn(A) - P(A) | S c(k)/3T(logn)an~1/2 

uniformly for all (measurable) convex subsets A of Rk. In (5), 
a= (k — l ) /2(£ + l) and c(k) is a constant depending only on k. 

THEOREM 2. Suppose that the characteristic function of £i satisfies 
the condition (C) : 

limsup 1/(0 | < 1. 

If & < ° ° (s^3) then 
a— 3 /» 

(6) Pn(A) = 2 > - " 2 I AP y ( -* ) + 0{(log f,)c*-iw»n-e-*>/i} 
y«o J il 

uniformly for all (measurable) convex subsets of Rk, where the functions 
Pj(—$) are defined by (3). 

Now suppose that £i is a lattice vector concentrated in the minimal 
lattice £o. Let Si(u) =u— [u] + l/2 for all real numbers u. Then we 
have 

THEOREM 3. If & < <*>, zfeen 
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V I W \ ( t ) / \ I f\\ (\ \k/2 - ^ - 2 > / 2 ) 
2L, I Pn(z) - qn 0 ) | = 0{(log n) n } 

ze£0 

where pn(z) is defined by (4) and 

THEOREM 4. Suppose ft, < <*>. rAerc 

P » U ) = f <*(>(*) + ^"1/2 f APi ( -S) + Of»-1) 
•/ A J A 

uniformly for all Borel sets A, where 

GO*) = I I M - «•1,J5i(*y»1/2 - W )̂ 1 $(*). 
y-i L d#yJ 

7w particular 

Fn{x) = *(*) + n - 1 " / * ^ - * ) - n-^^S^Xjn1'2 - na3) + 0{fTl) 

uniformly f or x in Rk. 

For Theorems 1 and 2 the method followed is a convolution method 
similar to the one employed by Esseen [5], Theorem 3 is easily 
proved by standard techniques of Fourier analysis, and the transition 
from Theorem 3 to Theorem 4 is effected through a generalization of 
the classical Euler-Maclaurin sum formula to functions of several 
variables. The details of proofs will appear elsewhere. 

The author is greatly indebted to R. R. Bahadur for encourage
ment and for valuable suggestions and discussions. 
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