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Let R, be the ring of algebraic integers in an algebraic number
field K, let P be a prime ideal in Ry, and let Ry (or briefly R) denote
the ring of P-integral elements of K. Choose m& R, such that 7R is
the unique maximal ideal in R. Further let K* be the P-adic comple-
tion of K, with ring of P-adic integers R*. For a fixed finite group G,
we understand by the term “R,G-module” a left R,G-module which
as Ro-module is torsion-free and finitely-generated; analogous defini-
tions hold for RG- and R*G-modules.

Swan [9; 10] has recently proved that the Krull-Schmidt theorem
is valid for projective R*G-modules. We show here the following main
result, which is a consequence of some work of Maranda [3; 4]:

THEOREM 1. The Krull-Schmidt theorem holds for arbitrary R*G-

modules, that is, of My, -+ -, M, Ny, -+ -, N, are indecomposable
R*G-modules such that

W Mot MENEN,

(the notation indicating external direct sums), then r=s, and after re-
numbering the {N,-} if need be, M1=N,, « - -, M,==N,.

To prove this and some corollaries we make use of the following
results of Maranda [3; 4].

(1) Let M and N be R*G-modules, and let e be the largest integer
for which P¢ divides the order of G. If M=N then

(2) M/meM = N/x¢N as (R*/m?R*)G-modules

for all d.

Conversely if (2) holds for some d>e, then M=N. Furthermore,
the same result holds for RG-modules.

(ii) Let M and N be RG-modules. Then M=N if and only if
R*M=R*N.

(iii) Let M be an R*G-module. If M is decomposable, so is M/m? M
for all d. Conversely if M/7*M is decomposable as (R*/w?R*)G-
module for some d>2¢, then M is also decomposable.

1 This research was supported in part by the Office of Naval Research. The author
wishes to thank Professor A. Heller for some helpful conversations.
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Now fix d=2¢+1, and let M = M/m*M, R*=R*/7%R*, and so on.
If (1) holds then we have
Tt +L=Ft -+,

as RG-modules, and each of the above summands is indecomposable
by virtue of (iii). But R*G is a ring with minimum condition, and so
the Krull-Schmidt theorem is valid for R*G-modules (see [2]).
Therefore 7=s, and renumbering the {¥;} if need be, we have

M,=~N,y -+, M =N,.
The conclusion now follows by (i).

COROLLARY 1. Let L, M, N be RG-modules such that M+L=N-+L.
Then M=N.

COROLLARY 2. Let M denote the direct sum of t copies of M. If M,
N are RG-modules such that MW=N for some t, then M=N.

CorOLLARY 3. The Krull-Schmidt theorem holds for indecomposable
RG-modules which remain indecomposable in passing to R*. In par-
ticular, it is valid for absolutely irreducible RG-modules.

The next corollary partially answers a question raised by Swan
[10].

COROLLARY 4. Let L, M, N be RoG-modules such that M+L=N-L.
Then for each P we have ReM=RpN. (If in particular M is absolutely
irreducible, and Ro has class number 1, then from Maranda [4] we may
conclude that M=N.)

It is still an open question as to whether the Krull-Schmidt theo-
rem holds for RG-modules. That it fails for R,G-modules already
follows from [5], but the following approach is also instructive. Let
N be an R¢G-submodule of the R(G-module M, such that KN=KM,
and define

ann (M/N) = {a € Ry: aM C N}.
Then we have

THEOREM 2. Let N1, N, be submodules of the RoG-module M such that
KN,=KN,=KM, and suppose that

ann(M/N,) + ann(M/N3) = R.
Then N1+ No=M+(N1NNy).
Proor. Choose a;Eann (M/N;), i=1, 2, so that a1+az=1. Then
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(n1, n3)—>(n14n,, aany—auny) gives the desired isomorphism.

In particular let M be absolutely irreducible, and let C denote an
ideal in Ro. From [4] or [6] it follows that M=~CM if and only if C
is principal. Hence if R, has class number >1, and if 4, B are non-
principal ideals of R, such that 4 +B =R, then we have from the
above

AM 4+ BM =~ M + ABM,

which shows that the Krull-Schmidt theorem does not hold.

Using a result of D. G. Higman’s [1] (see also [6]) one can show
that Theorems 1 and 2 are still valid when R,G is replaced by an
Re-order in a separable K-algebra, and likewise with R or R* in place
of Ro.

Related problems are studied in [7; 8; 11].

Added in proof. The author has recently discovered that Theorem 1
has been proved previously by R. G. Swan [unpublished] and also
by Borevich and Faddeyev [12], by a different approach. The corol-
laries and Theorem 2 are new, however.
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