VECTOR FIELDS ON SPHERES

BY HIROSI TODA

Communicated by Deane Montgomery, March 27, 1961

1. The problem is to determine the maximal number of the independent continuous fields of tangent vectors on the unit n-sphere S^n . The number will be denoted by $\lambda(n)$.

 $\lambda(n)$ is the maximal number of k such that the boundary homomorphism $\Delta_{n,k} \colon \pi_n(S^n) \to \pi_{n-1}(O_{n,k})$ associated with the fibering $O_{n+1,k+1}/O_{n,k} = S^n$ is trivial, where $O_{n,k}$ denotes the Stiefel manifold of the orthogonal k-vectors (k-frames) in the real n-space R^n .

The fundamental conjecture for our problem is stated as follows.

Conjecture. Does $\lambda(n) = \lambda^*(n)$ for all n > 0?

Here, the conjectured values $\lambda^*(n)$ are defined as follows:

$$\lambda^*(n) = \lambda_r$$
, if $n \equiv 2^r - 1 \pmod{2^{r+1}}$,
 $\lambda_0 = 0$, $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 7$

and

$$\lambda_{r+4} = \lambda_r + 8.$$

It was known that the conjecture is true for the cases r = 0, 1, 2, 3 [4].

The obtained results on $\lambda(n)$ are the following.

THEOREM 1. (a) $\lambda^*(n) \leq \lambda(n)$. (b) If $k = \lambda^*(n)$, then the image of $\Delta_{n,k}: \pi_n(S^n) \to \pi_{n-1}(O_{n,k})$ coincides with the image of the composition $i_* \circ J: \pi_k(SO(n-k-1)) \to \pi_{n-1}(S^{n-k-1}) \to \pi_{n-1}(O_{n,k})$ of G. Whitehead's homomorphism J and the homomorphism i_* induced by the usual injection $i: S^{n-k-1} \subset O_{n,k}$.

The first part (a) is provided by the recent work of Bott and Shapiro, Clifford modules and vector fields on spheres (mimeographed note), which states the existence of a continuous field of linear $\lambda^*(n)$ -frames on S^n .

THEOREM 2. $\lambda^*(n) = \lambda(n)$ if $n \equiv 2^r - 1 \pmod{2^{r+1}}$ for an integer r < 11.

Then our problem is still open in question on the sphere S^{2047} .

THEOREM 3.
$$\lambda(2^{i}m-1) \ge \lambda(m-1) + 2^{i-1}$$
 for $i = 1, 2, 3, 4$.

COROLLARY. If the above conjecture is not true for an $n \equiv 2^r - 1 \pmod{2^{r+1}}$ and r = 4s - 1 (s: positive integer), then the conjecture is not true for all n of $r \ge 4s - 1$.

2. The following lemma means that our problem is a stable one, that is, we may assume that for each r the integer n is sufficiently large.

LEMMA 1. $\lambda^*(2^r-1) \leq \lambda(2^r-1)$ if and only if $\lambda^*(n) \leq \lambda(n)$ for an integer n of $n \equiv 2^r-1 \pmod{2^{r+1}}$.

This lemma is proved by applying the theory [3] of James.

In the following, we always assume that the integers n are sufficiently large with respect to the other integers k and i such that the homology and homotopy considered are stable. Then we can replace $O_{n,k}$ by a cell complex

$$P_{n,k} = P^{n-1}/P^{n-k-1} = S^{n-k} \cup e^{n-k+1} \cup \cdots \cup e^{n-1}$$

which is obtained from real projective (n-1)-space P^{n-1} by shrinking its (n-k-1)-subspace P^{n-k-1} to a point, since the cellular decomposition of $O_{n,k}$ given in [7] shows that $P_{n,k}$ is a subcomplex of $O_{n,k}$ and the dimensionalities of $O_{n,k}-P_{n,k}$ are greater than 2n-2k. The exact sequence for the fibering $O_{n+1,k+1}/O_{n,k}=S^n$ is replaced by the following exact sequence:

$$\cdots \to \pi_n(S^n) \xrightarrow{\Delta_{n,k}} \pi_{n-1}(P_{n,k}) \xrightarrow{i_*} \pi_{n-1}(P_{n+1,k+1}) \to \cdots$$

Now our problem is transformed to a problem on the homotopy of $P_{n+1,k+1}$.

LEMMA 2. $\lambda(n)$ is a maximal number of k such that the attaching map of the n-cell $e^n = P_{n+1,k+1} - P_{n,k}$ is inessential in $P_{n,k}$, namely, $\Delta_{n,k}(\iota_n) = 0$ for the class $\iota_n \in \pi_n(S^n)$ of the identity of S^n .

The following two lemmas are obtained by translating results of [3] in our words.

LEMMA 3. If $k \leq \lambda(m-1)$, then the m-fold iterated suspension $E^m P_{n,k+1}$ of $P_{n,k+1}$ and $P_{n+m,k+1}$ have the same homotopy type.

In fact, a homotopy equivalence is given by the composition of the join: $E^m P_{n,k+1} = P_{n,k+1} * S^{m-1} \rightarrow P_{n,k+1} * P_{m,k+1}$ of the identity and a cross-section: $S^{m-1} \rightarrow P_{m,k+1}$ with the intrinsic join: $P_{n,k+1} * P_{m,k+1} \rightarrow P_{m+n,k+1}$.

LEMMA 4. Let n be odd, $h \leq k \leq \lambda(n)$ and n be large $(n \geq 2(k+h))$. Assume that $\Delta_{n,k+h}(\iota_n)$ is the image of $\alpha \in \pi_{n-1}(P_{n-k,h})$ under the homomorphism i_* induced by the injection $i: P_{n-k,h} \subset P_{n,k+h}$, then $\Delta_{2n+1,k+h}(\iota_{2n+1})$ is the image of $2E^{n+1}\alpha \in \pi_{2n}(P_{2n+1-k,h})$ under the homomorphism i_*' induced by the injection $i': P_{2n+1-k,h} \subset P_{2n+1,k+h}$.

Briefly stated, $\Delta_{n,k+h}(\iota_n)$ is an obstruction to the inequality $k+h \le \lambda(n)$ and two times it is an obstruction to $k+h \le \lambda(2n+1)$, since E^{n+1} is an isomorphism.

3. Let $K_{n,k}$ be a simply connected finite cell complex having the same homology of $P_{n,k}$. As n is so large, then $K_{n,k}$ has the same homotopy type as a suspension of a complex. The set of all the homotopy classes of the mappings of $K_{n,k}$ in itself forms a group as in [1]. Let $\iota_{n,k}$ be the class of the identity of $K_{n,k}$.

LEMMA 5. Let n be odd and large (n>4k). Then $2^{t}\iota_{n,2k}=0$ for $\lambda_{t-1} \ge 2k-1$. For example, $4\iota_{n,2}=0$, $8\iota_{n,4}=0$ and $16\iota_{n,6}=16\iota_{n,8}=0$.

This is proved by giving deformations in $K_{n,2k}$ and by applying the results on the stable groups $\pi_{n+k}(S^n)$ for $n \le 7$.

COROLLARY. Let n be odd and large with respect to k and i. Then $2^t\pi_{n+i}(K_{n,2k}) = 0$ and $2^t\pi^{n+i}(K_{n,2k}) = 0$ for $\lambda_{t-1} \ge 2k-1$, where π^{n+i} denotes the (n+i)th cohomotopy group.

Now Theorem 3 is a consequence of this corollary and Lemma 4. As another application of this corollary, we have the following:

THEOREM 4. Let n be odd and $\lambda_{t-1} \ge 2k-1$. Let $\Omega^{2k}(S^{n+2k})$ be the 2k-fold iterated loop-space of S^{n+2k} . Then $2^t\pi_i(\Omega^{2k}(S^{n+2k}), S^n) = 0$ for $i \le 3n-2$. If $i \le 4n-3$, then $2^t\pi_i(\Omega^{2k}(S^{n+2k}), S^n)$ has no 2-torsion.

By a similar method to *J*-homomorphism [6] of G. Whitehead, we have a homomorphism $J: \pi_{i-1}(E^{n-1}P_{n+2k,2k}) \to \pi_i(\Omega^{2k}(S^{n+2k}), S^n)$, which is an isomorphism if $i \leq 3n-2$ and an isomorphism of the 2-primary components if $i \leq 4n-3$. Then the theorem is proved by the above corollary.

As a corollary of Theorem 4, we have similar statements for the kernel and cokernel of E^{2k} : $\pi_i(S^n) \rightarrow \pi_{i+2k}(S^{n+2k})$.

4. Denote by $J_k \subset \pi_{n+k}(S^n)$ the image of G. Whitehead's *J*-homomorphism $J: \pi_k(SO(n)) \to \pi_{n+k}(S^n)$. Applying Bott's periodicity $\Omega^{\mathfrak{g}}SO(\infty) = SO(\infty)$, the following lemma is proved.

LEMMA 6. Let n be large. Let η be the generator of J_1 , and let σ^h and ζ^h be generators of J_{8h-1} and J_{8h+3} respectively, $h=1, 2, \cdots$. Then J_{8h} and J_{8h+1} are generated by the compositions $\sigma^h \circ \eta$ and $\sigma^h \circ \eta \circ \eta$, respectively, and ζ^h and σ^{h+1} are represented by compositions $g \circ f: S^{n+8h+3} \to S^{n+8h-1} \cup e^{n+8h+3} \to S^n$ and $g' \circ f': S^{n+8h+7} \to S^{n+8h-1} \cup e^{n+8h+7} \to S^n$, respectively, where $g \mid S^{n+8h-1}$ and $g' \mid S^{n+8h-1}$ represent σ^h , f and f' induce

homomorphisms of degree 2 of the homology groups and the cells e^{n+8h+8} and e^{n+8h+7} are attached to S^{n+8h-1} by essential mappings.

The proof of Theorem 1 is done by induction on r. Assume that Theorem 1 is proved for an r=4h-1, $h\geq 1$. In this case, $P_{n-8h-1,3}$ is of the same homotopy type as $P_{n-8h-2,2}\vee S^{n-8h-2}$ and $\Delta_{n,8h+2}(\iota_n)=i_*(\beta'+\sigma^h)$ for $\beta'\in\pi_{n-1}(P_{n-8h-2,2})$ and $\sigma^h\in\pi_{n-1}(S^{n-8h-2})$. In the complex $P_{n-8h-2,2}=S^{n-8h-4}\cup e^{n-8h-3}$ the cell e^{n-8h-3} is attached by degree 2. Then by shrinking S^{n-8h-4} to a point, the element β' goes to an element $\beta\in\pi_{n-1}(S^{n-8h-3})$ such that $2\beta=0$. Thus $\Delta_{n,8h+1}(\iota_n)=i_*(\beta+\sigma^h)$ for $2\beta=0$. Consider $2i_*(\beta+\sigma^h)=i_*(2\sigma^h)$. Since the cell $e^{n-8h-1}=P_{n-8h,3}-P_{n-8h-1,2}$ is attached to $P_{n-8h-1,2}=S^{n-8h-3}\vee S^{n-8h-2}$ by a mapping which represents η at S^{n-8h-3} and is of degree 2 at S^{n-8h-2} , it follows that $2\sigma^h\in\pi_{n-1}(S^{n-8h-2})$ and $\sigma^h\circ\eta\in\pi_{n-1}(S^{n-8h-3})$ go to the same element by the injections into $P_{n-8h,3}$. By Lemma 4, we have that $\Delta_{2n+1,8h+1}(\iota_{2n+1})=i_*E^{n+1}(\sigma^h\circ\eta)$ and this is the statement of Theorem 1 for r=4h.

Next step of the proof is done by showing that if $\Delta_{n,8h+2}(\iota_n) = i_*\alpha$ for an element $\alpha \in \pi_{n-1}(P_{n-8h-2,2})$ which goes to $\sigma^h \circ \eta$ by shrinking S^{n-8h-4} , then $\sigma^h \circ \eta \circ \eta \in \pi_{n-1}(S^{n-8h-4})$ goes to 2α by the injection of S^{n-8h-4} into $P_{n-8h-2,2}$.

The remaining two steps of the proof of Theorem 1 are too complicated to describe here, but it can be done by applying above lemmas.

5. The proofs of Theorem 2 are purely computations of the homotopy groups $\pi_{n-1}(P_{n,k})$ for $k=\lambda^*(n)+1$, by showing that $\Delta_{n,k}(\iota_n)\neq 0$. In the computations, the following results on the homotopy groups of spheres and several relations in them are used [5]. Let $(G_k; 2)$ be the 2-primary component of the stable group $\pi_{n+k}(S^n)$, n>k+1; then we have the following table.

BIBLIOGRAPHY

- 1. M. G. Barratt, Truck groups. I, Proc. London Math. Soc. vol. 5 (1955) pp. 71-106.
- 2. R. Bott, The stable homotopy of the classical groups, Ann. of Math. vol. 70 (1959) pp. 313-337.
- 3. I. M. James, The intrinsic join: a study of the homotopy groups of Stiefel manifolds, and Cross-sections of Stiefel manifolds, Proc. London Math. Soc. vol. 8 (1958) pp. 507-636 and pp. 536-547.
- 4. ——, Whitehead products and vector fields on spheres, Proc. Cambridge Philos. Soc. vol. 53 (1957) pp. 817-820.
- 5. H. Toda, Composition methods in homotopy groups of spheres, to be published in Annals of Mathematics Studies, Princeton University.
- 6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. vol. 51 (1950) pp. 192-237.
- 7. J. H. C. Whitehead, On the groups $\pi_r(V_{n,m})$ and sphere-bundles, Proc. London Math. Soc. vol. 48 (1944) pp. 243-291.

THE INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF KYOTO

COMPACT KAEHLER MANIFOLDS WITH POSITIVE RICCI TENSOR

BY SHOSHICHI KOBAYASHI Communicated by I. M. Singer, March 6, 1961

The purpose of the present note is to announce the following:

THEOREM 1. A compact Kaehler manifold with positive definite Ricci tensor is simply connected.

We say that the first Chern class of a compact Kaehler manifold is positive definite if it can be represented by a real closed (1, 1)-form which is positive in the sense of Kodaira [2]. The first Chern class of a manifold satisfying the assumption in Theorem 1 is necessarily positive definite. Theorem 1 follows from the following two theorems.

THEOREM 2. If the first Chern class of a compact Kaehler manifold M is positive definite, then the fundamental group of M has no proper subgroup of finite index.

THEOREM OF MYERS. The fundamental group of a compact Riemannian manifold with positive definite Ricci tensor is finite [3].

Theorem 2 can be proved by Kodaira's Vanishing Theorem and by the Riemann-Roch Theorem of Hirzebruch. Let g_p be the dimension of the space of holomorphic p-forms on M. Then $\chi(M) = \sum_{p=0}^{n} (-1)^p g_p$, where $n = \dim_{\mathbb{C}} M$, is called the arithmetic genus of M. If M is