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1. The problem is to determine the maximal number of the inde­
pendent continuous fields of tangent vectors on the unit w-sphere 5 n . 
The number will be denoted by \(n). 

\(n) is the maximal number of k such that the boundary homo-
morphism An,ki Tn(S

n) —» 7rw_i(0n,*) associated with the fibering 
On+i,k+i/On,ic = Sn is trivial, where On,k denotes the Stiefel manifold of 
the orthogonal fe-vectors (Mrames) in the real «-space Rn. 

The fundamental conjecture for our problem is stated as follows. 
CONJECTURE. Does \(n) =\*(w) for all n>0? 
Here, the conjectured values \*(n) are defined as follows: 

X*(») = Xr, if n s 2' - 1 (mod 2r+l), 

Ao = 0, Xi = 1, X2 = 3, X8 = 7 

and 

Xr+4 = Xr + 8. 

I t was known that the conjecture is true for the cases r = 0, 1, 2, 3 
[4]-

The obtained results on \{ri) are the following. 

THEOREM 1. (a) X*(w)gX(w). (b) If &=X*(«), then the image of 
An,jfc: 7Tn(5

n)—>7rn-i(On,jfc) coincides with the image of the composition 
HoJ:Tk(SO(n-k-l))^Tn-i(Sn-k-l)^Tn-i(On,k) ofG. Whitehead's 
homomorphism J and the homomorphism u induced by the usual injec­
tion i: Sn'~k~'1(ZOntk. 

The first part (a) is provided by the recent work of Bott and 
Shapiro, Clifford modules and vector fields on spheres (mimeographed 
note), which states the existence of a continuous field of linear 
X*(#) -frames on 5 n . 

THEOREM 2. X*(w)=X(w) ifn = 2r-l (mod 2r+1) for an integer r < l l . 

Then our problem is still open in question on the sphere S2047. 

THEOREM 3. X(2 i m-1) ê X ( m - l ) + 2 î ~ 1 for i = l , 2, 3, 4. 

COROLLARY. If the above conjecture is not true for an n = 2r — 1 
(mod 2r+l) and r = 4=s — 1 (s: positive integer), then the conjecture is not 
true for all n of r^4s—l. 
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2. The following lemma means that our problem is a stable one, 
that is, we may assume that for each r the integer n is sufficiently 
large. 

LEMMA 1. X*(2 r-1) ^ X ( 2 r - 1 ) if and only if \*(n)^\(n) for an 
integer n of n = 2r— 1 (mod 2 r+1). 

This lemma is proved by applying the theory [3 ] of James. 
In the following, we always assume that the integers n are suffi­

ciently large with respect to the other integers k and i such that the 
homology and homotopy considered are stable. Then we can replace 
On,k by a cell complex 

Pn,k = Pn-l/pn-k-l = £n~* \J en~k+l {J . . . \J en-\ 

which is obtained from real projective (n — l)-space Pn~l by shrink­
ing its (n — k — l)-subspace Pn~k~l to a point, since the cellular de­
composition of On,k given in [7] shows that Pn,k is a subcomplex of 
On,k and the dimensionalities of 0n,& —Pn,k are greater than 2n — 2k. 
The exact sequence for the fibering On+i^+i/On^^S" is replaced by 
the following exact sequence: 

A n k 1* 
• • • - * Tn(S

n) ^ Ttn-l{Pntk) -> 7rn-l(Pn+ltk+l) - » • ' • . 

Now our problem is transformed to a problem on the homotopy of 
Pn+\%k+l* 

LEMMA 2. \{n) is a maximal number of k such that the attaching map 
of the n-cell en = Pn+i,k+i — Pn,k is inessential in P»,*, namely, An,fc(in) = 0 
for the class Ln^Trn(S

n) of the identity of Sn. 

The following two lemmas are obtained by translating results of 
[3] in our words. 

LEMMA 3. If k ^ X(w — 1), then the m-fold iterated suspension 
EmPn,k+i of Pn,k+i and Pn+m,k+i have the same homotopy type. 

In fact, a homotopy equivalence is given by the composition of the 
join: EmPnik+i = Pn,k+i * 5W~1—>Pn,k+i * Pm,k+i of the identity and a 
cross-section: 5W_1—>Pm,k+i with the intrinsic join: Pn,k+i * Pm,k+i 
—*Pm+nt &+!• 

LEMMA 4. Let n be odd, h^k^\(n) and n be large (n^2(k+h)). 
Assume that An,k+h(t>n) is the image of a(~7rn-i(Pn-k,h) under the homo-
morphism i* induced by the injection i: Pn-k,h C Pn,k+h, then 
A2n+i,*+A(i2n+i) is the image of 2En+la(£7r2n(P2n+i-k,h) under the homo-
morphism i£ induced by the injection if: P2n+i-*,*CP2»+i,*+A. 
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Briefly stated, kn,k+h(in) is an obstruction to the inequality k+h 
^X(w) and two times it is an obstruction to k+h^\(2n + l), since 
En+l is an isomorphism. 

3. Let Knik be a simply connected finite cell complex having the 
same homology of Pn,k- As n is so large, then Kn,k has the same 
homotopy type as a suspension of a complex. The set of all the 
homotopy classes of the mappings of Kn,k in itself forms a group as 
in [ l ] . Let in,k be the class of the identity of Kn,k. 

LEMMA 5. Let n be odd and large (n>4:k). Then 2<in,2fc = 0 for X*_i 
^2fe — 1 . For example, 4tn,2 = 0, 8tw,4 = 0 and 16tw,6= 16in,8 = 0. 

This is proved by giving deformations in Kn,2k and by applying 
the results on the stable groups 7rn+k(Sn) for n^7. 

COROLLARY. Let n be odd and large with respect to k and i. Then 
2tTn+i(Knt2k)=0 and VTrn+i(Kn%u) = 0 for \t-i^2k-\, where irn+i de­
notes the (n+i)th cohomotopy group. 

Now Theorem 3 is a consequence of this corollary and Lemma 4. 
As another application of this corollary, we have the following: 

THEOREM 4. Let n be odd and X*_iè2jfe-1. Let Q**(SW+2*) be the 
2k-fold iterated loop-space of Sn+2k. Then 2twi(ti

2k(Sn+2k), S n ) = 0 for 
i^Zn-2. If i^4n-3, then 2t7ri(Q

2k(Sn+2k), Sn) has no 2-torsion. 

By a similar method to J-homomorphism [ó] of G. Whitehead, 
we have a homomorphism J: Ti-i(E

n-1Pn+2k,2k)-*Tri(Q,2k(Sn+2k), Sn), 
which is an isomorphism if i^3n — 2 and an isomorphism of the 2-
primary components if i^4n — 3. Then the theorem is proved by the 
above corollary. 

As a corollary of Theorem 4, we have similar statements for the 
kernel and cokernel of E2k: 7ri(Sn)->Ti+2k(Sn+2k). 

4. Denote by Jk<Z^n+k(Sn) the image of G. Whitehead's /-homo­
morphism J:Tk(SO(n))—>wn+k(Sn). Applying Bott 's periodicity 
Q8SO(°o) =S0(oo) , the following lemma is proved. 

LEMMA 6. Let n be large. Let rj be the generator of J\, and let ah and 
Çh be generators of J%n-\ and JM+Z respectively, h= 1, 2, • • • . Then Jsh 
and Jsh+i are generated by the compositions ah o rj and ah o n] o rj, respec­
tively, and Çh and ah+l are represented by compositions gof: Sn+8h+* 
_^Sn+sh-iyjen+sh+z^sn and gfof:Sn+Bh+r-^Sn+8h--llUen+sh+7-->Sn, re­
spectively, where g\ S**8*-1 and g'\ Sn+Sh~l represent ah, ƒ and ƒ' induce 
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homomorphisms of degree 2 of the homology groups and the cells £n+8*+8 

and en+sh+7 are attached to Sn+Sh~l by essential mappings. 

The proof of Theorem 1 is done by induction on r. Assume that 
Theorem 1 is proved for an r = 4Â — 1, A ̂  1. In this case, Pw-8^-i,3 is of 
the same homotopy type as Pnsh-2,2 V Sn~sh~2 and An,8>i+2(tn) 
= i*(P'+<rh) for /3'e7rw_i(Pn_8^_2,2) and ahETrn-i(Sn~sh-2). In the com­
plex Pn-sh-2,2 = Sn~sh~4Uen~sh~z the cell en~Sh~z is attached by degree 
2. Then by shrinking 5n~8/l~4 to a point, the element j8' goes to an 
element PGirn-i(S

n-*h-*) such that 2/3 = 0. Thus A»,»n-i(i„) =i*(P+<rh) 
for 2/8 = 0. Consider 2i*(p+ah) =i*(2<rh). Since the cell s»"8*"1 = -?„_».» 
-Pnsh-1,2 is attached to Pn-8*-i,2 = Sn~8*~3VSn~8/l~2 by a mapping 
which represents rj at 5n_8/ l~3 and is of degree 2 a t Sn~sh~-2, it follows 
that 2crhÇiirn-i(S

n-8h-2) and er* o ^G^n-iCS*"8*"3) go to the same ele­
ment by the injections into PW-8M- By Lemma 4, we have that 
A2n+i,8/1+1 (t2n+i) = i*i2w+1(0'fc ° ^) a n d this is the statement of Theorem 
1 f or r = 4fe. 

Next step of the proof is done by showing that if Aw,8*+2(in) —i*oi 
for an element a£7rn--i(Pn-8*-2,2) which goes to er* o 17 by shrinking 
5n_8/l~4, then ah o rj o rj^7rn-i(S

n~sh~4) goes to 2a by the injection of 
Sn-Sh-i i n t o Pn_8 / l_2 > 2 . 

The remaining two steps of the proof of Theorem 1 are too com­
plicated to describe here, but it can be done by applying above 
lemmas. 

5. The proofs of Theorem 2 are purely computations of the 
homotopy groups Trn-i(Pn,k) for k = \*(n) + l, by showing that 
An.jbCOs^O- In the computations, the following results on the homo­
topy groups of spheres and several relations in them are used [5]. 
Let (Gfc; 2) be the 2-primary component of the stable group wn+k(Sn), 
n>k + l; then we have the following table. 

k = 7 8 9 10 11 12 13 

(G*;2) = 

Z2 

+ 
z2 

z2 
+ 
z2 
+ 
z2 

z2 z8 0 0 

14 

z2 

+ 
z2 

15 

Z& 

+ 
z2 

16 

z2 
+ 
Z2 

17 

z2 
+ 
z2 
+ 
z2 

+ 

18 

Z8 

+ 
Zz 

19 

z8 
+ 
z2 

z2 
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The purpose of the present note is to announce the following: 

THEOREM 1. A compact Kaehler manifold with positive definite Ricci 
tensor is simply connected. 

We say that the first Chern class of a compact Kaehler manifold is 
positive definite if it can be represented by a real closed (1, l)-form 
which is positive in the sense of Kodaira [2]. The first Chern class 
of a manifold satisfying the assumption in Theorem 1 is necessarily 
positive definite. Theorem 1 follows from the following two theorems. 

THEOREM 2. If the first Chern class of a compact Kaehler manifold M 
is positive definite, then the fundamental group of M has no proper sub­
group of finite index. 

THEOREM OF MYERS. The fundamental group of a compact Rieman-
nian manifold with positive definite Ricci tensor is finite [3]. 

Theorem 2 can be proved by Kodaira's Vanishing Theorem and by 
the Riemann-Roch Theorem of Hirzebruch. Let gp be the dimension of 
the space of holomorphic ^-forms on M. Then x(M) = ]C*=o (~~ l)p&p> 
where n = dimc M, is called the arithmetic genus of M. If M is 


