VECTOR FIELDS ON SPHERES
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1. The problem is to determine the maximal number of the inde-
pendent continuous fields of tangent vectors on the unit n#-sphere S».
The number will be denoted by \(%).

A(n) is the maximal number of % such that the boundary homo-
morphism A, x: 7,(S") — ma1(0,,x) associated with the fibering
Oni1, 541/ On =S is trivial, where O, denotes the Stiefel manifold of
the orthogonal k-vectors (k-frames) in the real n-space R*.

The fundamental conjecture for our problem is stated as follows.

CoNJECTURE. Does A(n) =\*(%) for all n>0?

Here, the conjectured values N*(n) are defined as follows:

A(n) = A, if n=2"—1 (mod 27+,
Ao =0, A =1, A2 =3, Aa=1T
and
Aya = A+ 8.

It was known that the conjecture is true for the cases r=0, 1, 2, 3
[4].

The obtained results on A(n) are the following.

THEOREM 1. (a) A*(n) EN(n). (b) If k=\*(n), then the image of
Ap it Ta(S™) o mn_1(0n,x) coincides with the image of the composition
1% 0 J: m(SO(n—k—1))>m, (S * 1) >mw, 1(Onx) of G. Whitehead's
homomorphism J and the homomorphism ix induced by the usual injec-
tion 1: S 1 C O, 4.

The first part (a) is provided by the recent work of Bott and
Shapiro, Clifford modules and vector fields on spheres (mimeographed
note), which states the existence of a continuous field of linear
A*(n)-frames on S».

THEOREM 2. N*(n) =\(n) if n=2"—1 (mod 2+!) for an integer r <11.
Then our problem is still open in question on the sphere 52047,
THEOREM 3. A(2'm—1) 2N(m—1)+21! for 1=1, 2, 3, 4.

COROLLARY. If the above conjecture is not true for an n = 2 —1
(mod 27+1) and r=4s—1 (s: positive integer), then the conjecture is not
true for all m of r=z4s—1.
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2. The following lemma means that our problem is a stable one,
that is, we may assume that for each r the integer # is sufficiently
large.

LEMMA 1. A*(2r—1) SEN(27—1) if and only if N*(n) S\(n) for an
integer n of n=27—1 (mod 2+1).

This lemma is proved by applying the theory [3] of James.

In the following, we always assume that the integers # are suffi-
ciently large with respect to the other integers k and ¢ such that the
homology and homotopy considered are stable. Then we can replace
O,.x by a cell complex

Pn,k — Pn—l/Pn~k—1 = Snk\J enkt1\J) . . .\ gn—1

which is obtained from real projective (z—1)-space P*~! by shrink-
ing its (n—k—1)-subspace P»*~! to a point, since the cellular de-
composition of O, given in [7] shows that P, is a subcomplex of
Onx and the dimensionalities of O, x— Pa, are greater than 2n—2k.
The exact sequence for the fibering Ony1,441/On,x=S" is replaced by
the following exact sequence:
An,k %
s Tn(S") D Wn—l(Pn,k) i Wn—l(Pn+1,k+1) —> e

Now our problem is transformed to a problem on the homotopy of

Pu+l,k+1-

LEMMA 2. \(n) is @ maximal number of k such that the attaching map
of the n-cell €® = Py i1 k41— Pa k15 inessential in Py x, namely, A, 1 (tn) =0
for the class 1, &ma(S™) of the identity of S™.

The following two lemmas are obtained by translating results of
[3] in our words.

LEMMA 3. If kB = N(m — 1), then the m-fold iterated suspension
E™Py k11 0f P i1 and Poym ki1 have the same homotopy type.

In fact, a homotopy equivalence is given by the composition of the
join: E™Py, p11="Pn 41 * S" 1P, k41 * P i1 of the identity and a
cross-section: S™1—P, r1 with the intrinsic join: Pa iy1 * Pm ks
‘_’Pm+n,k+l-

LEMMA 4. Let n be odd, h<k=<\(n) and n be large (n=2(k+h)).
Assume that A, x41(1n) ts the image of S ma_1(Pai,1) under the homo-
morphism 1y induced by the injection 1t: Pu_ypn C Pagyn, then
Asnit, k41 (tany1) 15 the image of 2E" P aCE e, (Pont1—k,n) under the homo-
morphism iy induced by the injection i’ : Pony1—i,n CPong1,kthe
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Briefly stated, A, x44(ts) is an obstruction to the inequality k+k
=<\(n) and two times it is an obstruction to k+k=<A(2n+1), since
Ert! is an isomorphism.

3. Let K, be a simply connected finite cell complex having the
same homology of P, As 7 is so large, then K, ; has the same
homotopy type as a suspension of a complex. The set of all the
homotopy classes of the mappings of K, in itself forms a group as
in [1]. Let ta: be the class of the identity of K, .

LEMMA 5. Let n be odd and large (n>4k). Then 2%,,0.=0 for N\;
=2k —1. For example, 4in,2=0, 81,4=0 and 16¢,,4=161,3=0.

This is proved by giving deformations in K, and by applying
the results on the stable groups 7. (S™) for n 7.

COROLLARY. Let n be odd and large with respect to k and 1. Then
270y i(Kan,2) =0 and 2w +i(K, o) =0 for Nea =2k —1, where wti de-
notes the (n-+1)th cohomotopy group.

Now Theorem 3 is a consequence of this corollary and Lemma 4.
As another application of this corollary, we have the following:

THEOREM 4. Let n be odd and N1 =2k—1. Let Q%*(S*+2%) be the
2k-fold iterated loop-space of S*t*. Then 2iw,(Q¥*(S*+%), S*)=0 for
183n—2. If i<4n—3, then 2tw;(Q*(S"+%*), S") has no 2-torsion.

By a similar method to J-homomorphism [6] of G. Whitehead,
we have a homomorphism J: m;_1(E" 1P, o1 o) =7 (Q2(SnH2E) | Sn),
which is an isomorphism if 43z —2 and an isomorphism of the 2-
primary components if ¢ <4#n —3. Then the theorem is proved by the
above corollary.

As a corollary of Theorem 4, we have similar statements for the
kernel and cokernel of E%: 1;(S")—m o (SnH2¥),

4. Denote by Ji, Cmnk(S™) the image of G. Whitehead’s J-homo-
morphism J: m(SO(n))—mnk(S™). Applying Bott’s periodicity
Q850( ) =S0O(=), the following lemma is proved.

LEMMA 6. Let n be large. Let 1 be the generator of Jy, and let o and
¢t be generators of Jsn—y and Janys respectively, h=1,2, - - - . Then Ja
and Jsni1 are generated by the compositions a* o n and o" o n o 0, respec-
tively, and " and o**! are represented by compositions g o f: Sntshts
_)Sn+8h—luen+8h+3_) S* and g’ o f’ : Sn+8r+Y_, Sn+8h—11_) gn+8h+7_, Sn’ re-
spectively, where g| S*+*1 and g’ I Snt8h—1 yepresent o*, f and f' induce
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homomorphisms of degree 2 of the homology groups and the cells ent8h+3
and e™*t8t7 gye attached to S8 by essential mappings.

The proof of Theorem 1 is done by induction on ». Assume that
Theorem 1 is proved for an r=4ks—1, k= 1. In this case, Pn_gs—1,3 is of
the same homotopy type as Pa_si—22V S* 2 and A, shi2(ts)
=1x(B' +0") for B’ Emp1(Prn-sr—22) and ¢*Em,_1(S*-2), In the com-
plex P, gn_g,2=S""8—4_e» 83 the cell e»#3 is attached by degree
2. Then by shrinking S*»~%~4 to a point, the element 8’ goes to an
element BEm,_1(S"83) such that 28=0. Thus A, s141(ts) =1x(8+0")
for 28=0. Consider 2:x(8+0¢") =1x(2¢"). Since the cell " 81=P, g3
— P _gh1,2 is attached to Pn_gp1,0=S""8"3\/S»8~2 by a mapping
which represents 7 at S»8—2% and is of degree 2 at S*—82, it follows
that 2¢*Em,_1(S"#2) and o* 0 nET,_1(S"¥3) go to the same ele-
ment by the injections into Pn_s,3 By Lemma 4, we have that
Aznyi giyi1(tenys) =4xE"t (e 0 ) and this is the statement of Theorem
1 for r=4h.

Next step of the proof is done by showing that if A, gri2(ts) =15
for an element € m,—1(Prsn—2,2) Which goes to ¢* o g by shrinking
Sn—8h—4 then ¢* 0 7 0 NET,1(S* 8 4) goes to 2a by the injection of
S84 into P, _gh—a,2.

The remaining two steps of the proof of Theorem 1 are too com-
plicated to describe here, but it can be done by applying above
lemmas.

5. The proofs of Theorem 2 are purely computations of the
homotopy groups ma_1(Pax) for k=A*(n)-+1, by showing that
A, 1(1,) #0. In the computations, the following results on the homo-
topy groups of spheres and several relations in them are used [5].
Let (Gx; 2) be the 2-primary component of the stable group mn4(S"),
n>k+1; then we have the following table.

k= 7 8 9 10 11 12 13 14 15 16 17 18 19

Zy

Z, +
Z, + Zy Zs 22 2o Zs Zs
G;2)=1Zw + 22 2o Zs 0 0 + + + + + + -
Zy, + Zy Zo Zy Zy Zi Z

Zy +

Zy
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RICCI TENSOR
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The purpose of the present note is to announce the following:

THEOREM 1. A compact Kaehler manifold with positive definite Ricci
tensor is stmply connected.

We say that the first Chern class of a compact Kaehler manifold is
positive definite if it can be represented by a real closed (1, 1)-form
which is positive in the sense of Kodaira [2]. The first Chern class
of a manifold satisfying the assumption in Theorem 1 is necessarily
positive definite. Theorem 1 follows from the following two theorems.

THEOREM 2. If the first Chern class of a compact Kaehler manifold M
is positive definite, then the fundamental group of M has no proper sub-
group of finite index.

THEOREM OF MYERS. The fundamental group of a compact Rieman-
nian manifold with positive definite Ricci tensor is finite [3].

Theorem 2 can be proved by Kodaira’s Vanishing Theorem and by
the Riemann-Roch Theorem of Hirzebruch. Let g, be the dimension of
the space of holomorphic p-forms on M. Then x(M) = D> "_, (—1)7g,,
where n=dim¢ M, is called the arithmetic genus of M. If M is



