CORRECTION TO "SPACES OF RIEMANN SURFACES AS BOUNDED DOMAINS" AS BOUNDED DOMAINS"

BY LIPMAN BERS

Communicated May 31, 1961

In [3] I sketched a proof of the theorem: Every Teichmüller space $T_{g,n}$ is a bounded domain in complex number space.

This proof is invalid since Lemma B is false. The error in the argument occurs on page 101, lines 8-12. The theorem is nonetheless true. A complete proof will appear elsewhere; a brief outline follows. The same proof was found, simultaneously and independently, by Lars V. Ahlfors.

Let G be a Fuchsian group without elliptic elements and with the unit circle as a limit circle. Denote by U the unit disc and by V the domain $1 < |z| \le \infty$. The Riemann surfaces S = V/G and $\overline{S} = U/G$ are mirror images of each other.

Let M be the set of complex-valued measurable functions $\mu(z)$ such that $|\mu(z)| \leq k(\mu) < 1$, $\mu \equiv 0$ in U, and $\mu(z)d\bar{z}/dz$ is invariant under G. For $\mu \in M$ let $z \to w^{\mu}(z)$ be the homeomorphism of the plane onto itself which satisfies the Beltrami equation $w_{\bar{z}} = \mu w_z$ and is normalized by the conditions $w^{\mu}(0) = 0$, $w^{\mu}(1) = 1$. Then $G^{\mu} = w^{\mu}G(w^{\mu})^{-1}$ is a discontinuous group of Möbius transformations and $S^{\mu} = w^{\mu}(V)/G^{\mu}$ a Riemann surface. Also, w^{μ} defines a quasiconformal mapping f^{μ} of S onto S^{μ} and thus a point in the Teichmüller space T(S); all points in this space can be so obtained. We say that μ and ν are equivalent if they define the same point in T(S), i.e. if S^{μ} is conformal to S^{ν} and f^{μ} homotopic to f^{ν} . This is so if and only if there is a Möbius transformation C such that $C(w^{\mu}(z)) = w^{\nu}(z)$ in U (cf. [2]).

Holomorphic quadratic differentials on \overline{S} may be represented by G-automorphic forms of weight (-4) in U, i.e. by holomorphic functions $\phi(z)$, $z \in U$, with $\phi(z)dz^2$ invariant under G. We define the norm $\|\phi\|$ to be the supremum of $\lambda |\phi|$ where $\lambda(z) = (1-|z|^2)^2$. The quadratic differentials of finite norm form a complex Banach space B.

For $\mu \in M$ the function w^{μ} is holomorphic in U and so is its Schwarz derivative ϕ^{μ} ; note that ϕ^{μ} depends only on the equivalence class $[\mu]$ of μ . One verifies directly that $\phi^{\mu}(z)dz^2$ is G-invariant, and by a theorem of Nehari [4] we have that $||\phi^{\mu}|| \leq 6$. Knowing ϕ^{μ} we may recon-

¹ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Ordnance Research, U. S. Army, Contract No. DA-30-ORD-2153. Reproduction in whole or in part is permitted for any purpose of the United States government.

struct w^{μ} as the quotient of two solutions of the ordinary differential equation $2\kappa'' = \phi \kappa$. Hence $[\mu] \rightarrow \phi^{\mu}$ is a one-to-one mapping of T(S) onto a bounded set $W \subset B$. This mapping is holomorphic in the following sense: if $\mu \in M$ depends holomorphically on complex parameters, so does $\phi^{\mu}(z)$, for every fixed $z \in U$ (cf. [1]).

Assume now that G is finitely generated. Then S is obtained from a closed surface of genus g by removing $n \ge 0$ points with 3g-3+n>0, dim B=3g-3+n, and $[\mu] \rightarrow \phi^{\mu}$ is a holomorphic homeomorphism of $T(S)=T_{g,n}$ onto W. Since dim $T_{g,n}=\dim B$, W is a domain.

REFERENCES

- 1. Lars V. Ahlfors and Lipman Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. vol. 72 (1960) pp. 385-404.
- 2. Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 94-97.
- 3. _____, Spaces of Riemann surfaces as bounded domains. ibid. vol. 66 (1960) pp. 98-103.
- 4. Zeev Nehari, The Schwarzian derivative and schlicht functions, ibid. vol. 55 (1949) pp. 545-551.

New York University