EXAMPLES OF PERIODIC MAPS ON EUCLIDEAN SPACES WITHOUT FIXED POINTS

BY J. M. KISTER ${ }^{1}$
Communicated by Deane Montgomery, March 29, 1961

Let T be a map of period r on a Euclidean space E^{n}. Smith seems to have been the first to consider fixed points of T. He showed that T has a fixed point if r is a prime in [4], extended this result to r a power of a prime, and raised the question concerning the existence of a fixed point for r not a prime power in [5]; also cf. Problem 33 in [3]. Conner and Floyd gave an example of a contractible manifold M_{r} for every r not a prime power, and a map T of period r on M_{r} without fixed points [2]. They conjectured that M_{r} was a Euclidean space. This note shows that a slight modification of their example is Euclidean, hence:

Theorem. If r is an integer which is not a power of a prime, then there exists a triangulation τ of $E^{9 r}$, a map T of period r on $E^{9 r}$ without fixed points, and T is simplicial relative to τ.

I wish to express my indebtedness to Professor Floyd for his help and encouragement.

Preliminaries. Let K be a subcomplex of a Euclidean space E under a triangulation σ. Let $\sigma_{K}^{(1)}$ be the subdivision of σ obtained by adding barycenters of all simplexes not contained in K, cf. [6, p. 251]. $\sigma_{K}^{(i+1)} \equiv\left(\sigma_{i K}^{(i)}\right)_{K}^{(i)}$. If K is the empty complex, $\sigma_{K}^{(i)} \equiv \sigma^{(i)}$, the usual i th barycentric subdivision. Denote the closed star of K in σ by $V(K, \sigma)$ and let $V^{2}(K, \sigma)=V(V(K, \sigma), \sigma) . N_{W}(K, \sigma) \equiv V\left(K, \sigma_{K}^{(2)}\right)$ is a "regular" neighborhood of K; cf. [6, p. 293]. If K is a contractible finite subcomplex having dimension m and $E=E^{n}$, where $n \geqq 2 m+5$, then it follows from Corollary 3 in [6, p. 298] that $N_{W}(K, \sigma)$ is an n-cell. Much use is made of this fact; however it will be convenient later to use the following neighborhood: $N_{1}(K, \sigma) \equiv V\left(K^{(2)}, \sigma^{(2)}\right)$, i.e. the star of K (subdivided twice barycentrically) in $\sigma^{(2)}$. Since it will be necessary to use Whitehead's result, but only in a topological way (i.e. noncombinatorial), it suffices to show that $N_{W}(K, \sigma)$ and $N_{1}(K, \sigma)$ are homeomorphic. This can be done by looking at an n-simplex ρ in the triangulation $\sigma_{K}^{(1)}$ which intersects K, and constructing a canonical homeomorphism of $N_{W}(K, \sigma) \cap \rho$ and $N_{1}(K, \sigma) \cap \rho$ in such a way that two such homeomorphisms match on p-faces, $p<n$. Let $\rho=\rho_{0} \circ \rho_{1}$,

[^0]the join, where ρ_{0} and ρ_{1} are simplexes in $\sigma_{K}^{(1)}$ with $\rho_{0} \cap K=\varnothing$ and $\rho_{1} \subseteq K$. It is easy to show that every segment $A_{x_{0}, x_{1}}=\left\{x_{t}=(1-t) x_{0}\right.$ $+t x_{1} \mid t$ in $\left.[0,1]\right\}$ where x_{0} is in ρ_{0}, x_{1} in ρ_{1}, intersects $N_{W}(K, \sigma)$ and $N_{1}(K, \sigma)$ in a desirable way; namely there exist t_{W} and t_{1} in (0,1) such that $A_{x_{0}, x_{1}} \cap N_{W}(K, \sigma)=\left\{x_{t} \mid t_{W} \leqq t \leqq 1\right\} \equiv A_{W}$ and $A_{x_{0}, x_{1}}$ $\cap N_{1}(K, \sigma)=\left\{x_{t} \mid t_{1} \leqq t \leqq 1\right\} \equiv A_{1}$. Now map A_{W} onto A_{1} linearly and do this for each pair x_{0}, x_{1} in ρ_{0} and ρ_{1}. The regular neighborhoods used here will now be N_{1}, and we define $N_{i+1}(K, \sigma) \equiv N_{i}\left(N_{1}(K, \sigma), \sigma^{(2)}\right)$, a subcomplex in E under $\sigma^{(2 i+2)}$. Clearly if K_{1} is a subcomplex under $\sigma_{1}, K_{1} \subseteq K$, and σ_{1} refines σ, then $N_{i}\left(K_{1}, \sigma_{1}\right) \subseteq N_{i}(K, \sigma)$, for all i.

For a given r in the theorem let K be the Conner-Floyd example of a 4-dimensional, star-finite, contractible complex with Z_{r} acting without fixed points [2, p. 360]. K is the union of simplicial mapping cylinders C_{i} whose "beginning" B_{i} and "end" E_{i} are 3 -spheres. C_{i} is the simplicial analogy of the ordinary mapping cylinder defined, in this case, by a simplicial map f^{*} of B_{i} into E_{i} which is inessential. Also $E_{i}=B_{i+1}$. For a more exact description the reader is referred to [2]. It will also be assumed that K is imbedded as a subcomplex of $E=E^{9 r}$ with triangulation σ, S is a simplicial map of E onto itself of period r (in fact, $S\left(x_{1}, \cdots, x_{r}\right)=\left(x_{2}, \cdots, x_{r}, x_{1}\right)$ for $x_{i} \in E^{9}$), K is an invariant set under S, and $S \mid K$ is the generator of Z_{r}. This, too, was done in [2]. σ can be taken fine enough so that $V\left(C_{i}, \sigma\right)$ and $V\left(C_{j}, \sigma\right)$ are disjoint if $|i-j|>1$. Since S is simplicial and K, invariant, $N_{i}(K, \sigma)$ is invariant for each i, hence $E^{\prime} \equiv \bigcup_{i=1}^{\infty} N_{i}(K, \sigma)$ is invariant. Since S has no fixed points in K and $E^{\prime} \subseteq$ Int $V(K, \sigma), S$ has no fixed points in E^{\prime}. It will be shown that E^{\prime} is Euclidean. To do this it will suffice to express E^{\prime} as the union of cubes $\left\{I_{j}\right\}_{j=1}^{\infty}$ with $I_{j} \subseteq$ Int I_{j+1} and then one could use a recently announced result of M. Brown. ${ }^{2}$ However, in this special case, where each I_{j} is in E^{n}, $\bigcup_{j=1}^{\infty} I_{j}$ is seen to be Euclidean by an easy application of another result of Brown which is in the literature [1]. For by the characterization of a tame S^{n-1} in E^{n} given there, and by taking I_{j} to be a slightly smaller concentric cube, there is no loss of generality in assuming that $\mathrm{Bd} I_{j}$ is a tame S^{n-1} in E^{n} for each j. Hence the complement J of $U_{j=1}^{\infty} I_{j}$ in the one point compactification of E^{n} is the intersection of decreasing cubes, i.e. cellular [1], hence $E^{n} \approx S^{n}-J$ $=\left(E^{n} \cup \infty\right)-J=\cup_{j=1}^{\infty} I_{j}$.

Lemma. Given any positive integer i there exists a subdivision σ_{i} of σ and a finite contractible complex K_{i} in σ_{i} such that

[^1](1) $L_{i} \equiv \mathrm{U}_{j \leq i} C_{j} \subseteq K_{i}$.
(2) σ_{i} agrees with σ on $V\left(L_{i}, \sigma\right)$, hence $N_{j}\left(L_{i}, \sigma\right) \subseteq N_{j}\left(K_{i}, \sigma_{i}\right)$, for all j.
(3) $N_{j}\left(K_{i}, \sigma_{i}\right) \subseteq N_{j}\left(L_{i+2}, \sigma\right)$, for all j.

Proof. Note that if D is a 4 -cell and h is a homeomorphism from the $\operatorname{Bd} D$ onto the end E_{i+1} of C_{i+1}, then since E_{i+1} is a strong deformation retract of C_{i+1}, hence of L_{i+1}, it follows that the identification space $L_{i+1} \cup D / h$ is contractible. The proof of the lemma depends on getting a simplicial representation K_{i} of this identification space close to L_{i+2}.

First we produce a map f of D into C_{i+2}. For a simplicial model of D take the cone over the simplicial 3-sphere B, where B is a copy of B_{i+2}, the beginning of $C_{i+2} . D=\{(b, t) \mid b \in B, t \in I\} / B \times 1$. Let $D^{\prime} \equiv\{(b, t) \in D \mid t \in[0,1 / 2]\}, D^{\prime \prime} \equiv\{(b, t) \in D \mid t \in[1 / 2,1]\} . D^{\prime} \cap D^{\prime \prime}$ $\equiv B^{\prime}$. Now map D^{\prime} into C_{i+2} by f^{\prime} such that $f^{\prime} \mid B: B \rightarrow B_{i+2}$ is a simplicial isomorphism, $f^{\prime}\left(B^{\prime}\right) \subseteq E_{i+2}$ and $f^{\prime} \mid B^{\prime}$ is inessential (it can be taken to be, essentially, f^{*}). Hence there is a $\operatorname{map} f^{\prime \prime}: D^{\prime \prime} \rightarrow E_{i+2}$ such that $f^{\prime \prime}\left|B^{\prime}=f^{\prime}\right| B^{\prime}$. Then $f \mid D^{\prime}=f^{\prime}$ and $f \mid D^{\prime \prime}=f^{\prime \prime}$ define f.

Let ϵ be so small that the ϵ-neighborhood (under the usual metric for E) of C_{i+2} is contained in $N_{1}\left(C_{i+2}, \sigma\right)$. Since $\operatorname{dim} E=9 r>8$ we can get g, an ϵ-approximation of f, which imbeds D in E (hence in $\left.N_{1}\left(C_{i+2}, \sigma\right)\right)$ and such that
(a) $g|B=f| B$ and $g(D) \cap L_{i+1}=B_{i+2}=g(B)$,
(b) g maps linearly (using the vector space structure of E) each simplex in the k th barycentric subdivision of D, for some k.
The usual technique is used, that of subdividing D so that images of simplexes under f are small relative to ϵ, then choosing a point near each image of a vertex (keeping fixed images of vertices in B) so that the set of all such points is in general position, and then extending the obvious vertex map linearly.

Now we get a subdivision of $V\left(C_{i+2}, \sigma\right)$ so that $g(D)$ may be regarded as a subcomplex. One way of getting this would be to regard each 4-simplex in $g(D)$ as a subsimplex of a rectilinear n-simplex in E. Consider the ($n-1$)-planes determined by the ($n-1$)-faces of such n-simplexes, one chosen for each 4 -simplex in $g(D)$. The triangulation σ, together with this finite collection of ($n-1$)-planes, partitions $V\left(C_{i+2}, \sigma\right)$ into convex polyhedral sets which can then be triangulated. Furthermore this triangulation σ_{i} can be taken so fine that $N_{1}\left(g(D), \sigma_{i}\right)$ $\subseteq N_{1}\left(C_{i+2}, \sigma\right)$. Now extend the triangulation σ_{1} to all of E keeping σ on $F=\mathrm{Cl}\left(E-V^{2}\left(C_{i+2}, \sigma\right)\right)$. This can be done by triangulating the "ring" $R=\mathrm{Cl}\left(V^{2}\left(C_{i+2}, \sigma\right)-V\left(C_{i+2}, \sigma\right)\right)$ without introducing any new vertices in $V^{2}\left(C_{i+2}, \sigma\right)-V\left(C_{i+2}, \sigma\right)$. Each simplex under σ in R, say ρ, may be regarded as a join of two simplexes ρ_{1} and ρ_{2} in F and
$V\left(C_{i+2}, \sigma\right)$ respectively, where ρ_{2} has been subdivided under σ_{i}. Triangulate ρ by taking the joins of ρ_{1} with the small simplexes in ρ_{2} under σ_{i}. Do this for each ρ in R getting a triangulation σ_{i} of E which is a subdivision of σ, which agrees with σ on F. Condition (2) of the lemma follows from $V\left(L_{i}, \sigma\right) \subseteq F$.

Define $K_{i}=L_{i+1} \cup g(D)$, a contractible subcomplex under the triangulation σ_{i}. Condition (1) is clearly satisfied. Since σ_{i} refines $\sigma, N_{j}\left(L_{i+1}, \sigma_{i}\right) \subseteq N_{j}\left(L_{i+1}, \sigma\right)$ and since $N_{1}\left(g(D), \sigma_{i}\right) \subseteq N_{1}\left(C_{i+2}, \sigma\right)$, $\left.N_{j}\left(g(D), \sigma_{i}\right) \subseteq N_{j}\left(C_{i+2}\right), \sigma\right)$ and it follows that $N_{j}\left(K_{i}, \sigma_{i}\right) \subseteq N_{j}\left(L_{i+1}, \sigma\right)$ $\cup N_{j}\left(g(D), \sigma_{i}\right) \subseteq N_{j}\left(L_{i+1}, \sigma\right) \cup N_{j}\left(C_{i+2}, \sigma\right)=N_{j}\left(L_{i+2}, \sigma\right)$, hence condition (3) is satisfied and the lemma proved.

Proof of the theorem. Using the notation of the lemma, $N_{1}\left(K_{i}, \sigma_{i}\right)$ $\approx N_{W}\left(K_{i}, \sigma_{i}\right)$ is an n-cell by [6], hence $N_{i}\left(K_{i}, \sigma_{i}\right)$, which can be expressed as $N_{1}\left(N_{i-1}\left(K_{i}, \sigma_{i}\right), \sigma_{i}^{(2 i-2)}\right) \approx N_{W}\left(N_{i-1}\left(K_{i}, \sigma_{i}\right), \sigma_{i}^{(2 i-2))}\right)$, is an n-cell, which we designate by I_{i}. Using the lemma we get:

$$
\begin{aligned}
N_{1}\left(L_{1}, \sigma\right) & \subseteq I_{1} \subseteq N_{1}\left(L_{3}, \sigma\right) \subseteq N_{3}\left(L_{3}, \sigma\right) \subseteq I_{3} \subseteq N_{3}\left(L_{5}, \sigma\right) \\
& \subseteq N_{5}\left(L_{5}, \sigma\right) \subseteq I_{5} \subseteq \cdots
\end{aligned}
$$

and $I_{2 i-1}$ is contained in the interior of $I_{2 i+1}$. Then $E^{\prime}=\bigcup_{i=1}^{\infty} N_{i}(K, \sigma)$ $=\bigcup_{i=1}^{\infty} N_{i}\left(L_{i}, \sigma\right)=\bigcup_{j=1}^{\infty} I_{2 j-1}$ is Euclidean. The map T is, of course, $S \mid E^{\prime}$, and the invariant triangulation is obtained in the following way. $N_{i}(K, \sigma)$ is a complex in $\sigma^{(2 i)}$, and it is subdivided twice without subdividing $N_{i-1}(K, \sigma)$, i.e. $N_{i}(K, \sigma)$ becomes a complex in $\left(\sigma^{(2 i)}\right)_{N_{i-1}(K, \sigma)^{2}}^{2}$.

Added in proof. D. R. McMillan has communicated to me an alternate (and simpler) way of producing examples in $E^{18 r}$ making use of recent results of his in Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc., this issue, pp. 510-514

References

1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 74-76.
2. P. E. Conner and E. E. Floyd, On the construction of periodic maps without fixed points, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 354-360.
3. S. Eilenberg, On the problems of topology, Ann. of Math. vol. 50 (1949) pp. 247260.
4. P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. vol. 35 (1934) pp. 572-578.
5. -, Fixed point theorems for periodic transformations, Amer. J. Math. vol. 63 (1941) pp. 1-8.
6. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. vol. 45 (1938) pp. 243-327.

[^0]: ${ }^{1}$ The author holds an ONR Research Associateship at the University of Virginia.

[^1]: ${ }^{2}$ The monotone union of open n-cells is an open n-cell, Notices Amer. Math. Soc. vol. 7 (1960) p. 478.

