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Let T be a map of period r on a Euclidean space En. Smith seems 
to have been the first to consider fixed points of T. He showed that 
T has a fixed point if r is a prime in [4], extended this result to r a 
power of a prime, and raised the question concerning the existence 
of a fixed point for r not a prime power in [5 ] ; also cf. Problem 33 
in [3]. Conner and Floyd gave an example of a contractible manifold 
Mr for every r not a prime power, and a map T of period r on Mr 

without fixed points [2]. They conjectured that Mr was a Euclidean 
space. This note shows that a slight modification of their example is 
Euclidean, hence: 

THEOREM. If r is an integer which is not a power of a prime, then 
there exists a triangulation r of E9r> a map T of period r on E9r without 
fixed points j and T is simplicial relative to r. 

I wish to express my indebtedness to Professor Floyd for his help 
and encouragement. 

Preliminaries. Let K be a subcomplex of a Euclidean space E under 
a triangulation <r. Let cr$ be the subdivision of ex obtained by adding 
barycenters of all simplexes not contained in K, cf. [6, p. 251 ]. 
<r£+1) = (<r$)$. If K is the empty complex, <r$ = *<*>, the usual ith 
barycentric subdivision. Denote the closed star of K in a by V(K, a) 
and let V2(K, a) = V(V(K, <r), <r). NW(K, &) s V(K, af) is a "regular" 
neighborhood of K; cf. [6, p. 293]. If K is a contractible finite sub-
complex having dimension m and E = £ n , where « ^ 2 r a + 5 , then it 
follows from Corollary 3 in [6, p. 298] that NW(K, <r) is an «-cell. 
Much use is made of this fact; however it will be convenient later to 
use the following neighborhood: Ni(K, a) = V(K(2), (T(2)), i.e. the star 
of K (subdivided twice barycentrically) in cr(2). Since it will be neces
sary to use Whitehead's result, but only in a topological way (i.e. 
noncombinatorial), it suffices to show that Nw(K, a) and Ni(K, <r) 
are homeomorphic. This can be done by looking at an «-simplex p in 
the triangulation <r$ which intersects K, and constructing a canon
ical homeomorphism of Nw(K, cr)P\p and Ni(K, o-)C\p in such a way 
that two such homeomorphisms match on p-{aces, p<n. Let p = po o pi, 

1 The author holds an ONR Research Associateship at the University of Virginia. 
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the join, where po and p\ are simplexes in <r{§ with poC\K = 0 and 
piQK. It is easy to show that every segment AXQtX1 = {xt=(l—t)xo 
+txi\ t in [0, l ]} where xo is in p0, Xi in pi, intersects Nw(K, o) and 
Ni(K, a) in a desirable way; namely there exist tw and h in (0, 1) 
such that AXQtXir\ Nw(K, a) = {X*|/TT ^ J ^ l} = ^4IF and AXQtX1 

HNi(K, a)=s{xt\h£t£l}=Ai. Now map Aw onto ^4i linearly and 
do this for each pair Xo, X\ in po and pi. The regular neighborhoods used 
here will now be Ni, and we define Ni+i(K, <r)=Ni(Ni(K, <r), cr(2)), a 
subcomplex in E under <r(2i+2). Clearly if K\ is a subcomplex under 
0*1, i ^ i Ç ^ , and (Ti refines cr, then Ni(Ki, <ri)QNi(Kf cr), for all i. 

For a given r in the theorem let K be the Conner-Floyd example 
of a 4-dimensional, star-finite, contractible complex with Zr acting 
without fixed points [2, p. 360 ]. K is the union of simplicial mapping 
cylinders d whose "beginning" Bi and "end" Ei are 3-spheres. Ci is 
the simplicial analogy of the ordinary mapping cylinder defined, in 
this case, by a simplicial map ƒ* of Bi into Ei which is inessential. 
Also Ei = Bi+1. For a more exact description the reader is referred 
to [2]. It will also be assumed that K is imbedded as a subcomplex of 
E = E9r with triangulation cr, 5 is a simplicial map of E onto itself 
of period r (in fact, S(xi, • • • , xr) = (x2, • • • , xr, Xi) for x;£-E9), X 
is an invariant set under 5, and 5 | K is the generator of Z r. This, too, 
was done in [2]. <r can be taken fine enough so that F(Ct-, a) and 
^(Cy, 0") are disjoint if | i — j | > 1 . Since 5 is simplicial and K, in
variant, Ni(K, a) is invariant for each i, hence E' ^ Û°L 1 Ni(K, a) is 
invariant. Since S has no fixed points in K and E ' C I n t F(i£, <r), 5 
has no fixed points in E'. I t will be shown that E' is Euclidean. To do 
this it will suffice to express E' as the union of cubes {lJ}fL1 with 
JyÇInt 7y+i and then one could use a recently announced result of 
M. Brown.2 However, in this special case, where each Ij is in En , 
Uylx Ij is seen to be Euclidean by an easy application of another 
result of Brown which is in the literature [ l j . For by the character
ization of a tame 5 n _ 1 in En given there, and by taking Ij to be a 
slightly smaller concentric cube, there is no loss of generality in as
suming that Bd Ij is a tame Sn~x in En for each j . Hence the comple
ment J of U/li Ij in the one point compactification of En is the 
intersection of decreasing cubes, i.e. cellular [ l ] , hence En^Sn — J 
= ( ^ U o o ) - J = U ; . 1 / y . 

LEMMA. Given any positive integer i there exists a subdivision (Ti of cr 
and a finite contractible complex Ki in <Ti such that 

2 The monotone union of open n-cells is an open n-cellf Notices Amer. Math. Soc. 
vol. 7 (1960) p. 478. 
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(1) Li = \Jisi CjQKi. 
(2) <Ti agrees with <x on V(Lif o*), hence Nj(Li, a) QNj(Kif <Ti),for allj. 
(3) Nj(K<, crt)CiVy(L,+2, <r),for allj. 

PROOF. Note that if D is a 4-cell and A is a homeomorphism from 
the Bd D onto the end Ei+i of C»+i, then since E t+i is a strong de
formation retract of Ct+i, hence of L*-+.i, it follows that the identifica
tion space Li+\VJD/h is contractible. The proof of the lemma depends 
on getting a simplicial representation Kt- of this identification space 
close to Lt+2. 

First we produce a map ƒ of D into C;+2. For a simplicial model of 
D take the cone over the simplicial 3-sphere B, where B is a copy of 
Bi+2, the beginning of Ct+2. # = { ( & , *)|&€EB, * € l } / B X l . Let 
P ' s { ( 6 , fle£|*e[0, 1/2]}, D " s {(6, 0 G ^ | ^ G [ l / 2 , 1]} .£>Y\D" 
=22'. Now map Df into Ct+2 by ƒ such that ƒ ' | JB: B—>Bi+2 is a sim
plicial isomorphism, ƒ' (£ ') C £ 1 + 2 and f\B' is inessential (it can be 
taken to be, essentially,/*). Hence there is a m a p / " : Dn—»£t+2 such 
that ƒ" 15 ' =ƒ' | B'. Then ƒ| Z>' = ƒ and ƒ| Z>" = ƒ" define ƒ. 

Let e be so small that the €-neighborhood (under the usual metric 
for E) of C»+2 is contained in Ni(Ci+2f <r). Since dim E = 9r>8 we can 
get g, an e-approximation of ƒ, which imbeds D in E (hence in 
Ni(Ci+2, <r)) and such that 

(a) g\B=f\B and g(D)r\Li+1 = Bi+2 = g(B)1 

(b) g maps linearly (using the vector space structure of E) each 
simplex in the feth barycentric subdivision of D, for some k. 
The usual technique is used, that of subdividing D so that images of 
simplexes under ƒ are small relative to e, then choosing a point near 
each image of a vertex (keeping fixed images of vertices in B) so that 
the set of all such points is in general position, and then extending 
the obvious vertex map linearly. 

Now we get a subdivision of F(C t+2, <x) so that g(D) may be re
garded as a subcomplex. One way of getting this would be to regard 
each 4-simplex in g(D) as a subsimplex of a rectilinear w-simplex in E. 
Consider the (n—l)-planes determined by the (n — l)-faces of such 
w-simplexes, one chosen for each 4-simplex in g(D). The triangulation 
er, together with this finite collection of (» — l)-planes, partitions 
V(Ci+2, a) into convex polyhedral sets which can then be triangulated. 
Furthermore this triangulation <rt- can be taken so fine that Ni(g(D), er,) 
ÇiVi(C t+2, a). Now extend the triangulation <Xi to all of E keeping <r 
on F=Cl(E— V2(Ci+2, o*)). This can be done by triangulating the 
"ring" R = Cl(V2(Ci+2, <r) — V(Ci+2, <?)) without introducing any new 
vertices in F2(C l+2, o) — F(C t+2 , a). Each simplex under <r in R, say 
p, may be regarded as a join of two simplexes p\ and p2 in F and 
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F(C t+2 , <r) respectively, where p2 has been subdivided under o\. Tri
angulate p by taking the joins of px with the small simplexes in p2 

under cr*. Do this for each p in R getting a triangulation <r4- of E which 
is a subdivision of <r, which agrees with a on F. Condition (2) of the 
lemma follows from V(Lif cr)QF. 

Define Ki = Li^i<Jg(D)1 a contractible subcomplex under the tri
angulation o\-. Condition (1) is clearly satisfied. Since <Ti refines 
a, Nj(Li+u Ci)QNj(Li+i, <T) and since Nx(g(D), cr^QN^d^ cr), 
Nj(g(D), cr<)CiVy(C<+2), cr) and it follows that Nj(Ki9 (T^QNjiLm, a) 
yJNj(g(D), (T^QNjiLi+i, <T)KJNj{Ci^ <T)=NJ(LWI <r), hence condi
tion (3) is satisfied and the lemma proved. 

Proof of the theorem. Using the notation of the lemma, Ni(Kit <Ti) 
^Nw(Ki, <T%) is an w-cell by [ó], hence Ni(Ki, <r%), which can be ex
pressed as Ni(Ni-i(Ki9 (Ti), crf-^^NwiN^iKi, cr,), <rf~2))), is an 
w-cell, which we designate by /»-. Using the lemma we get: 

Ni(Lu a) C A C Nx(Lh a) C # , (£ , , ff)C/,C # , (£ . , <r) 

C ^5 (^5 , cr) Ç ƒ 5 C • • • 

and I2*-i is contained in the interior of hi+\. Then -E' = Û°LX Ni(K, <r) 
= U/Li Ni(Lif cr) = U/Lx hj-i is Euclidean. The map T is, of course, 
51 Er, and the invariant triangulation is obtained in the following way. 
Ni(K, cr) is a complex in cr(2i\ and it is subdivided twice without sub
dividing Ni-i(K, cr), i.e. Ni(K, cr) becomes a complex in 

Gr™)^*.*)». 
Added in proof. D. R. McMillan has communicated to me an alter

nate (and simpler) way of producing examples in ElSr making use of 
recent results of his in Cartesian products of contractible open 
manifolds, Bull. Amer. Math. Soc , this issue, pp. 510-514 
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