THE ARGUMENT OF AN ENTIRE FUNCTION

BY HERBERT S. WILF

Communicated by I. J. Schoenberg, May 28, 1961

Theorem. Let $f(z)$ be an entire function of order ρ, and let $\phi(r)$ denote the number of points of the circle $|z|=r$ at which $f(z)$ is real. Then

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\lim \sup } \frac{\log \phi(r)}{\log r} \geqq \rho \tag{1}
\end{equation*}
$$

Proof. The de la Vallée Poussin means of $f(z)=\sum b_{y} z^{y}$ are

$$
\begin{equation*}
V_{n}(z)=\frac{b_{0}}{2}+\sum_{\nu=1}^{n} C_{2 n, n+\nu} / C_{2 n, n} b_{\nu} z^{\nu} \quad(n=0,1,2, \cdots) \tag{2}
\end{equation*}
$$

It has been shown by Pólya and Schoenberg [1] that the curve $w=f\left(r e^{i \theta}\right)$ crosses any straight line at least as often as the curve $w=V_{n}\left(r e^{i \theta}\right)$. Taking this line to be the real axis, let $\phi(r), \phi_{n}(r)$ respectively, denote the number of points of $|z|=r$ at which $f(z), V_{n}(z)$ are real. Then

$$
\phi(r) \geqq \phi_{n}(r) .
$$

If $N_{n}(r)$ is the number of zeros of $V_{n}(z)$ in $|z| \leqq r$, then by the argument principle, $\phi_{n}(r) \geqq N_{n}(r)$ and thus

$$
\phi(r) \geqq N_{n}(r) \quad(n=0,1,2, \cdots)
$$

Suppose that in the circle $|z| \leqq \rho_{n}, V_{n}(z)$ has at least p zeros. Then for $r \geqq \rho_{n}$

$$
\begin{equation*}
\phi(r) \geqq p \tag{3}
\end{equation*}
$$

We have now the theorem of Montel (see [2, p. 113]) that in the circle

$$
|z| \leqq 1+\max _{j \leqq p}\left|a_{j} / a_{n}\right|^{1 /(n-p+1)}
$$

the polynomial

$$
a_{0}+a_{1} z+\cdots+a_{n} z^{n}
$$

has at least p zeros. Applying this to (2), we can take

$$
\rho_{n} \leqq 1+\max _{j \leqq p}\left\{C_{2 n, n+j}\left|\frac{b_{j}}{b_{n}}\right|\right\}^{1 /(n-p+1)}
$$

Now if $\epsilon>0$ is given, we have for all n

$$
\begin{equation*}
\left|b_{n}\right| \leqq A n^{-n /(\rho+\epsilon)} \tag{A>1}
\end{equation*}
$$

while, for infinitely many $n,\left|b_{n}\right| \geqq n^{-n /(-\varepsilon)}$. Thus

$$
\rho_{n} \leqq 1+\max _{j \leqq p}\left\{C_{2 n, n+j} \frac{A j^{-j /(\rho+\epsilon)}}{n^{-n /(\rho-\epsilon)}}\right\}^{1 /(n-p+1)}
$$

for infinitely many n. Hence for such n,

$$
\begin{aligned}
\rho_{n} & \leqq 1+\left\{A C_{2 n, n} n^{n /(\rho-\epsilon)}\right\}^{1 /(n-p)} \\
& \leqq 1+\left\{A^{1 / n} 4 n^{1 /(\rho-\epsilon)}\right\}^{n /(n-p)} .
\end{aligned}
$$

Now let α be fixed, $0<\alpha<1$, and take $p=\alpha n$; then for infinitely many n

$$
\begin{aligned}
\rho_{n} & \leqq 1+\left\{A^{1 / n} 4 n^{1 /(\rho-\epsilon)}\right\}^{1 /(1-\alpha)} \\
& \leqq\left\{B n^{1 /(\rho-\epsilon)}\right\}^{1 /(1-\alpha)} .
\end{aligned}
$$

Hence from (3) with $p=\alpha n$,

$$
\phi\left(\left(B n^{1 /(\rho-\epsilon)}\right)^{1 /(1-\alpha)}\right) \geqq \alpha n
$$

and putting $r=\left\{B n^{1 /(\rho-\epsilon)}\right\}^{1 /(1-\alpha)}$, there is a sequence of values of r tending to infinity along which

$$
\phi(r) \geqq \alpha B^{-(\rho-\epsilon)} r^{(1-\alpha)(\rho-\epsilon)}
$$

whence

$$
\limsup _{r \rightarrow \infty} \frac{\log \phi(r)}{\log r} \geqq(1-\alpha)(\rho-\epsilon)
$$

and the result follows since $\epsilon>0$ and $0<\alpha<1$ were arbitrary.
We ask: (a) can the sign of inequality hold in (1)? (b) is it true that

$$
\limsup _{n \rightarrow \infty} \frac{\log n}{\log r_{n}}=\rho
$$

where r_{n} is the modulus of the zero of largest modulus of (2)?

References

1. G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. vol. 8 (1958) pp. 295-334.
2. M. Marden, The geometry of the zeros of a polynomial in a complex variable, Mathematical Surveys, no. 3, American Mathematical Society, 1949.

University of Illinois

