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The purpose of this note is to exhibit some new coverings in the 
free lattice, FL(n), generated by a finite number of elements. Free 
lattices were studied extensively by P. M. Whitman [l ; 2] who found 
a number of coverings. Theorem 1 of this note guarantees an infinite 
number of distinct pairs of covering elements. 

Let FL(n) have generators xi, • • • , xn. The definition of the words 
(elements) of the lattice and the ordering of the words are those of 
Whitman [ l ] . We make use of his Lemma 1.1 appearing in [2]: 

In FL(n), if w is any word and xr is any generator, then either 
w^xr or UïVr X{ ̂  w, but not both. 

LEMMA. In FL(n) let w}zxr. If [wr\([)i9*r x^^Jx^w then w covers 
wr\QJi7*rxl). 

PROOF. First note that w^w^Qô^r x^ as w^xr, but U^*, #» J x , . 
Now suppose that w è y è w n ( U , y r #»•). If y^xr, then Mi^x^y and 
hence y = wr\([)i9ér #;). If y^xr> then w g [ ^ n ( U ^ , x O j U x r g y U ^ 
= y :g w and hence y = w. 

THEOREM 1. In FL(n), let Kii^x^y. Then xr^Jy covers (x\Jy) 
r\(\J&rXi). 

PROOF. We set w = x^Jy and verify the criteria of the lemma. Since 
U&rXi è y it follows that (xr ^J y) C\ (U^ r Xi) ^ y and hence 
[(xr\Jy)r\(\)ter Xi)]VJxr^xr\Jy. The theorem now follows. 

COROLLARY. Let FL(3) have generators a, b, and c. If w is any word, 
thena\J{bC\w) covers [(aKJ(br\w)]r\(bUc). 

PROOF. bKJc^b^br\w. 
Note that a\J(bC\w) is the form of a typical element in an infinite 

ascending chain of elements in FL(3) as established in [2], thus this 
corollary gives an infinite number of pairs of distinct coverings in 
FL(3). 
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If w §£ xr, the criterion of the lemma really states that 
w>= [wP\(U,vr x t ) ]Ux r . This is certainly a necessary condition for a 
word w such that w^xr to cover wn(U»yr #;). Since no element of 
FL(n) is both meet and join reducible, it follows that if w}£xr and 
w is meet reducible then w properly contains Xr\J\wr\QJi^r #*)] 
which, by Theorem 1 does cover (xrVJ [wP\(Utvr ^i)])^(U»vr tf*). The 
characterization of those w such that w covers or equals 
xT\J\wr\(}Ji^r Xi)] seems difficult. However the following converse 
for Theorem 1 does hold. 

THEOREM 2. In FL(n), if w^xr and w covers wr\((Ji^rXi)t then 
w = xr\Jy where Utyr Xi^y. 

PROOF. The remarks of the preceding paragraph show that we 
may suppose that w has a canonical form W\U • • • Uîcm where Wj is 
a generator or «/,-= fit w»y. Since w = [wO(U»vr x t)]Wx r, we can make 
use of Corollary 2 of Theorem 2 in [l ] to infer that for every j , either 

(a) Wj; ^ W C\ ( U Xi J ^ U *,-, 

or 

(b) wy ̂  #r. 

Now if (a) holds for all j , then Utvr x t - ^w^# r , a contradiction. Hence 
Wj^xr for some ƒ On the other hand, w^xr implies Wk^xr for some k. 
But then the canonicity of the form WiU • • • Uze;m implies that k=j 
(say = l) and so w\ = xT. But then canonicity implies that (a) must 
hold for j = 2, 3, • • • , my or that y = w2^J • • • W ^ ^ U ^ r ^ , as was 
to be proved. 
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