DERIVATIONS AND GENERATIONS OF FINITE EXTENSIONS

BY CARL FAITH¹

Communicated by Nathan Jacobson, May 8, 1961

Let k be a given ground field, let \mathfrak{F}_r denote the class of finite (=finitely generated) field extensions of k of tr.d. (=transcendence degree) $\leq r$, and let n be the function defined on $\mathfrak{F} = \bigcup_{0}^{\infty} \mathfrak{F}_r$ by: for any $L \in \mathfrak{F}$, n(L) = the minimal number of generators of L/k. Classically it is known for suitable k that there exist purely transcendental extensions L/k having tr.d. 2, and containing impure subextensions of tr.d. 2, a fact which shows that in general n is not monotone in \mathfrak{F} for all k. The main result of this note establishes that these "counter-examples to Lüroth's theorem" constitute the only barriers to the monotonicity of n (see Theorem 2 for a precise statement). In particular it is demonstrated that n is montone on \mathfrak{F}_1 for arbitrary k, a result which appears new even when restricted to the subclass \mathfrak{F}_0 of finite algebraic extensions of k.

A result of independent (and possibly more general) interest, which is proved below, and which is essential to our proof of the statements above, is that dim \mathfrak{D} is montone on \mathfrak{F} , where for any $L \in \mathfrak{F}$, $\mathfrak{D}(L)$ is the vector space over L of k-derivations of L. The connection between **n** and dim \mathfrak{D} is given in the lemma.

LEMMA. Let L/k be a finite extension of tr.d. r, let $s = \dim \mathfrak{D}(L)$, and let n = n(L). Then $s \le n \le s+1$; if s > r, then $n = s^2$

PROOF. It is known (e.g. [3, Theorem 41, p. 127]) that s is the smallest natural number³ such that there exist elements $u_1, \dots, u_s \in L$ such that L is separably algebraic over the field $U = k(u_1, \dots, u_s)$. Then L = U(a) for some $a \in L$, so that $s \leq n \leq s+1$.

If s > r, there exists u_q in the set $S = \{u_1, \dots, u_s\}$ such that u_q is algebraically dependent over k on the complement of u_q in S. For convenience renumber so that u_s is algebraic⁴ over the field $T = k(u_1, \dots, u_{s-1})$. A short argument shows that L = U(a) for some

¹ National Science Foundation Postdoctoral Fellow in the Institute for Advanced Study, on leave from Pennsylvania State University.

² Expressed in the other words: If L/k is not separably generated, then $n(L) = \dim \mathfrak{D}(L)$.

³ Strictly speaking the notation should allow for the case s=0. By agreement then U=k.

⁴ In case s=1 set T=k.

 $a \in L$ which is separably algebraic over T. Thus $L = T(u_s, a)$ is generated over T by two elements one of which is separable over T. Then, by a classic result in field theory (cf. [2, §43, p. 138]), $L = T(u'_s)$ for suitable $u'_s \in L$. Clearly then n = s. Q.E.D.

If L/k is a finite extension, and L'/k a subextension, in general not every derivation of $\mathfrak{D}(L')$ can be extended to a derivation in $\mathfrak{D}(L)$. Nevertheless, the theorem below shows that dim \mathfrak{D} is a monotone function.

THEOREM 1. Let L/k be a finite field extension, and let L'/k be any subextension. Then $s = \dim \mathfrak{D}(L) \ge s' = \dim \mathfrak{D}(L')$.

PROOF. Let r = tr.d. L/k and r' = tr.d. L'/k. It is easy to see that it suffices to consider only the case r=r'. For if r' < r, then there exists a field extension L'' contained in L which is purely transcendental over L' and such that tr.d. L''/k=r. Since L''/L' is a pure extension, every $D' \in \mathfrak{D}(L')$ is extendable to a derivation D'' in $\mathfrak{D}(L'')$. It is an easy exercise to show that if D'_1, \dots, D'_t are linearly independent over L', then $D'_{1'}, \dots, D'_{t'}$ are linearly independent over L'', so that dim $\mathfrak{D}(L'') \geq s'$. Hence it remains only to show that $s \geq s'$ when r = r'. An argument similar to the one just completed shows that $s \ge s'$ when L/L' is separable. The proof now proceeds by induction on the algebraic degree |L:L'| of the extension L/L'. One can therefore assume the theorem for all extensions L'' of k which contain L'and such that |L'':L'| < |L:L'|. Then clearly one can suppose that L' is a maximal proper subfield of L. Since the separable case already has been decided, assume that k has characteristic p > 0, and that L/L' is inseparable. Then the maximality of L' shows that $k(L^p) \subseteq L'$. By [1, p. 218] or [3, Theorem 41, p. 127], one has

$$p^{s} = |L:k(L^{p})|$$
, and $p^{s'} = |L':k(L'^{p})|$,

so that the inclusions

$$L \supset L' \supseteq k(L^p) \supseteq k(L'^p)$$

together with the inequality

$$\left| L:L' \right| \geq \left| k(L^p):k(L'^p) \right|$$

yield the desired inequality $p^s \ge p^{s'}$, that is, $s \ge s'$. Q.E.D.

COROLLARY. Let L/k be a finite extension, and let L'/k be any subextension. Then, if either L/k or L'/k is not separably generated, then $n(L) \ge n(L')$. CARL FAITH

PROOF. Let $s = \dim \mathfrak{D}(L)$, $r = \operatorname{tr.d.} L/k$, n = n(L), and let s', r', and n' be the corresponding integers for L'/k. If L'/k is not separably generated, neither is L/k, so that we can assume that L/k is not separably generated in either case, that is, that $s \ge r+1$. Then n = s by the lemma, whence $n = s \ge s'$ by the theorem. If n' = s', we are through, and if $n' \ne s'$, then n' = s' + 1 = r' + 1 by the lemma again. Since $r \ge r'$, this latter equality yields

$$n = s \ge r + 1 \ge r' + 1 = s' + 1 = n',$$

as desired.

The corollary is surprising in view of the troublesomeness usually associated with nonseparably generated extensions.

Before stating the last result, it is convenient to make the definition: k is an (r)-field in case no pure transcendental extension of k of tr.d. r contains an impure subextension of tr.d. r over k. Clearly if n is monotone in \mathcal{F}_r , then k must be an (m)-field, $m=0, 1, \cdots, r$. Our next theorem establishes the converse.

THEOREM 2. If k is an (r)-field, and if L/k is a finite extension of tr.d. r, then $n = n(L) \ge n' = n(L')$ for any subextension L'/k of L/k.

PROOF. Let s, r, n, and their primes be defined as in the corollary. If s' > r', then n > n' by the corollary. If L'/k is purely transcendental, then trivially $n \ge n'$. Otherwise s' = r' implies by the lemma that n' = s' + 1 = r' + 1. Then, since k is an (r)-field, necessarily $n \ge r + 1 = r' + 1 = n'$, if r = r'. If r > r', then clearly $n \ge r \ge r' + 1 = n'$. Q.E.D.

By definition, any field is a (0)-field, and, by Lüroth's theorem, any field is a (1)-field. Thus, the theorem implies the corollary:

COROLLARY. Let k be an arbitrary field. Then n is monotone in the class \mathfrak{F}_1 of finite extensions of tr.d. ≤ 1 over k; in particular, n is monotone in the class \mathfrak{F}_0 of finite algebraic extensions of k.

A consequence of Theorem 2 and the theorem of Castelnuovo-Zariski (see [4]) is the following:

COROLLARY. Let k be an algebraically closed field of characteristic 0. Then n is monotone in the class \mathfrak{F}_2 of finite extensions of tr.d. ≤ 2 over k.

A possible value of Theorem 2 is that in order to show that a given field is not an (r)-field, it is possible to do this by showing that n is not monotone on its finite extensions of tr.d. r, that is, one need not restrict one's attention to the pure transcendental extensions of k.

552

References

1. Nathan Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 206-224.

2. B. L. van der Waerden, Algebra I, Vierte Auflage, Berlin-Göttingen-Heidelberg, 1955.

3. Oscar Zariski and Pierre Samuel, Commutative algebra, vol. I, Princeton, 1958.

4. Oscar Zariski, On Castelnuovo's criterion of rationality $p_a = P_2 = 0$ of an algebraic surface, Illinois J. Math. vol. 2 (1958) pp. 303-315.

INSTITUTE FOR ADVANCED STUDY