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A matrix A is called conservative if Ax is convergent (its limit is 
called lircu x) whenever x is a convergent sequence, regular if liiru x 
= lim x for such x, coregular if conservative and x ( ^ ) ^ l im^,» $2*-i ®nk 
— ]C*-i a * ̂ 0 (here a* = lim»-co ank), and conull if xG4)=0. The 
terms coregular and conull were introduced in [2]. 

A regular matrix is coregular, as is any matrix equipotent with a 
regular one. However, there exist coregular matrices not equipotent 
with any regular matrix. The example, due to Zeiler, is given in [3], 
We present here an example of a quite different nature. 

(An open problem in the field is that of characterizing FK spaces 
which have a right to be called coregular. That {1} be separated 
from the linear closure of {ôn} is necessary but not sufficient.) 

Restricting ourselves, for convenience, to triangles ( # „ ^ 0 , aw& = 0 
for k>n), let cA— {x: Ax is convergent}. Then CA is isomorphic with 
c, the space of convergent sequences, under A : CA—>C. Thus CA be­
comes a Banach space. If CA = CB = F say, the norms on F due to A, B 
are equivalent since A =DB with CD = C and \\x\\A =\\Ax\\ S\\D\\ \\BX\\ 

HMIIMU-
If the functional lim is continuous on C(ZCA we extend it by the 

Hahn-Banach theorem to be defined on all of CA» By a construction 
of Mazur [l , Theorem 2, p. 45], we obtain a matrix B with lim5 

= lim on c, and CB = CA. (See [2] for proof that lim satisfies Mazur's 
condition.) 

Clearly B is regular. 
Conversely if such regular B exists it follows that lim is continuous 

since lim = lim^. 
Thus, for our example, it is sufficient to construct a coregular 

matrix A such that lim is not continuous on CA. 
Let Y be the matrix such that Yx= {xn-i+xn}* Then (1/2) F is a 

regular triangle. Let B be the matrix whose nth row is {h, fa, • • • , 
/tt_i, 0, 0, • • • } where \tn\ is a suitably chosen sequence with 
]C | *«| < °° • Then B is in the radical of the Banach algebra A of con­
servative triangular matrices. (See [4].) Note that Y has no inverse 
in this algebra. Finally, let A =B + F. Then A is coregular. The norm 
associated with CA is 

I n~1 I 
Ml = SUP Z) fc*A + #II-1 + *n|. 
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We shall choose /n = ( — l)n/n2. Now to construct x with | l i m # | 
large and ||x|| not large we shall, given any integer tn, supply x with 
lim x = — 1/2 log m, \\x\\ <M where M is an absolute constant which 
could easily be determined. 

Namely, let 

%n = »(— l ) n — 1/2 logn for 1 rg n ^ tn, 

= (2m — n)(—\)n — 1/2 logm form < n g 2w, 

= —1/2 log m f or n > m. 

If the matrix F had been chosen so that Yx= {sxn-i+txn} then for 
/ > 5 ^ 0 w e have that F'~1GA hence A"1^A since B is in the radical. 
Thus CA = C, lim is continuous and ||#|| < 1 implies | lim x\ is less than 
some constant, depending on 5, t and {/n}. This result also follows 
from Lemma 4.2 of [4]. There should be situations between these 
extremes in which CAT^C, yet a regular matrix coincident with A 
exists. This may very well occur if all / n > 0 , and s — t= 1, but we are 
unable to say at present. 

Added in proof. Research Problem 3 (Bull. Amer. Math. Soc. vol. 
67 (1961) p. 355) by Albert Wilansky, which inspired this article, has 
also been solved by Lawrence Shepp. 
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