AN EXAMPLE IN SUMMABILITY

BY W. K. HAYMAN AND ALBERT WILANSKY

Communicated by Edwin Hewitt, July 18, 1961

A matrix A is called *conservative* if Ax is convergent (its limit is called $\lim_{A} x$) whenever x is a convergent sequence, regular if $\lim_{A} x = \lim_{n \to \infty} x$ for such x, coregular if conservative and $\chi(A) \equiv \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} - \sum_{k=1}^{\infty} a_{k} \neq 0$ (here $a_{k} = \lim_{n \to \infty} a_{nk}$), and conull if $\chi(A) = 0$. The terms coregular and conull were introduced in [2].

A regular matrix is coregular, as is any matrix equipotent with a regular one. However, there exist coregular matrices not equipotent with any regular matrix. The example, due to Zeller, is given in [3]. We present here an example of a quite different nature.

(An open problem in the field is that of characterizing FK spaces which have a right to be called coregular. That $\{1\}$ be separated from the linear closure of $\{\delta^n\}$ is necessary but not sufficient.)

Restricting ourselves, for convenience, to triangles $(a_{nn} \neq 0, a_{nk} = 0 \text{ for } k > n)$, let $c_A = \{x : Ax \text{ is convergent}\}$. Then c_A is isomorphic with c, the space of convergent sequences, under $A : c_A \rightarrow c$. Thus c_A becomes a Banach space. If $c_A = c_B = F$ say, the norms on F due to A, B are equivalent since A = DB with $c_D = c$ and $||x||_A = ||Ax|| \leq ||D|| ||Bx|| = ||D|| ||x||_B$.

If the functional lim is continuous on $c \subset c_A$ we extend it by the Hahn-Banach theorem to be defined on all of c_A . By a construction of Mazur [1, Theorem 2, p. 45], we obtain a matrix B with $\lim_{B} = \lim_{C} c_A$ or $c_B = c_A$. (See [2] for proof that $\lim_{C} c_A = c_A$ condition.)

Clearly B is regular.

Conversely if such regular B exists it follows that \lim is continuous since $\lim = \lim_{B}$.

Thus, for our example, it is sufficient to construct a coregular matrix A such that \lim is not continuous on c_A .

Let Y be the matrix such that $Yx = \{x_{n-1} + x_n\}$. Then (1/2) Y is a regular triangle. Let B be the matrix whose nth row is $\{t_1, t_2, \cdots, t_{n-1}, 0, 0, \cdots\}$ where $\{t_n\}$ is a suitably chosen sequence with $\sum |t_n| < \infty$. Then B is in the radical of the Banach algebra Δ of conservative triangular matrices. (See [4].) Note that Y has no inverse in this algebra. Finally, let A = B + Y. Then A is coregular. The norm associated with c_A is

$$||x|| = \sup_{n} \left| \sum_{k=1}^{n-1} t_k x_k + x_{n-1} + x_n \right|.$$

We shall choose $t_n = (-1)^n/n^2$. Now to construct x with $|\lim x|$ large and ||x|| not large we shall, given any integer m, supply x with $\lim x = -1/2 \log m$, ||x|| < M where M is an absolute constant which could easily be determined.

Namely, let

$$x_n = n(-1)^n - 1/2 \log n$$
 for $1 \le n \le m$,
= $(2m - n)(-1)^n - 1/2 \log m$ for $m < n \le 2m$,
= $-1/2 \log m$ for $n > m$.

If the matrix Y had been chosen so that $Yx = \{sx_{n-1} + tx_n\}$ then for $t > s \ge 0$ we have that $Y^{-1} \in \Delta$ hence $A^{-1} \in \Delta$ since B is in the radical. Thus $c_A = c$, lim is continuous and ||x|| < 1 implies $|\lim x|$ is less than some constant, depending on s, t and $\{t_n\}$. This result also follows from Lemma 4.2 of [4]. There should be situations between these extremes in which $c_A \ne c$, yet a regular matrix coincident with A exists. This may very well occur if all $t_n > 0$, and s = t = 1, but we are unable to say at present.

Added in proof. Research Problem 3 (Bull. Amer. Math. Soc. vol. 67 (1961) p. 355) by Albert Wilansky, which inspired this article, has also been solved by Lawrence Shepp.

REFERENCES

- 1. S. Mazur, Eine Anwendung der Theorie der Operationen bei der Untersuchung der Toeplitzchen Limitierungsverfahren, Studia Math. vol. 2 (1930) pp. 40-50.
- 2. A. Wilansky, An application of Banach linear functionals to summability, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 59-68.
- 3. ——, Summability: the inset, replaceable matrices, the basis in summability space, Duke Math. J. vol. 19 (1952) pp. 647-660.
- 4. A. Wilansky and K. Zeller, Banach algebra and summability, Illinois J. Math. vol. 2 (1958) pp. 378-385.

IMPERIAL COLLEGE, LONDON, AND LEHIGH UNIVERSITY