ON THE COHOMOLOGY OF TWO-STAGE POSTNIKOV SYSTEMS

BY LEIF KRISTENSEN
Communicated by P. R. Halmos, July 21, 1961

1. Introduction. The purpose of this paper is to compute the cohomology of certain spaces with two nonvanishing homotopy groups. Let $P(\pi, n ; \tau, m, k)(n<m)$ denote the space with homotopy groups π and τ in dimensions n and m, all other homotopy groups equal to zero, and (first) k-invariant equal to $k \in H^{m+1}(K(\pi, n), \tau)$. Let ϵ_{i} be the basic class in $H^{i}(K(\tau, i), \tau)$. We shall then compute the mod 2 cohomology of $P_{n, n}=P\left(Z_{2}, n, Z_{2}, 2^{h} n-1, \epsilon_{n}^{2 h}\right)$.

Extending the methods of this paper, further computations can be carried out. This will be done in a subsequent paper.
2. The Steenrod construction. In this section we are working in the category of css-complexes. In the (non-normalized) chain complex $C_{*}(K)$ of a css-complex K we can define a filtration. Let namely σ_{q} denote a q-simplex in K. We can then in a unique way write σ_{q} in the form

$$
\sigma_{q}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{q-p}} \sigma_{p}, \quad 0 \leqq i_{q-p}<\cdots<i_{1}<q
$$

where σ_{p} is a nondegenerate p-simplex in K and s_{i} denotes a degeneracy operator in K. The generator $\sigma_{q} \in C_{q}(K)$ is then said to be of filtration p

$$
\sigma_{q} \in F_{p} C_{*}(K)
$$

This defines a filtration in $C_{*}(K)$.
Let π be a permutation group on the n letters ($0,1, \cdots, n-1$) and let V be an arbitrary π-free resolution of the integers. Let V be filtered by dimension. Let $V \otimes C_{*}$ and $C_{*}^{(n)}$ (the n-fold tensor product of C_{*}) be filtered by the usual tensor product filtration. Let π operate trivially in C_{*}, diagonally in $V \otimes C_{*}$, and by permutation of the factors in $C_{*}^{(n)}$. We then have the

Theorem. There exists a natural π-equivariant filtration and augmentation preserving transformation

$$
\begin{equation*}
\phi^{\prime}: V \otimes C_{*} \rightarrow C_{*}^{(n)} \tag{1}
\end{equation*}
$$

If Φ^{\prime} is another such transformation then ϕ^{\prime} and Φ^{\prime} are homotopic by a natural π-equivariant homotopy of degree $\leqq 1$ (i.e. $H(v \otimes \eta) \in F_{p+i+1}$ if $\operatorname{dim} v=i$ and $\eta \in F_{p}$).

Let C denote the normalized cochain functor. Let $f: E \rightarrow B$ be an arbitrary css-mapping. Then f induces filtrations in $C_{*}(E)$ and $C(E)\left(C_{*}(E)\right.$ is filtered by inverse images of skeletons in B. The filtration in $C(E)$ is (essentially) the dual of this filtration). The mapping (1) gives rise to a mapping

$$
\begin{equation*}
\phi: V \otimes_{\pi} C(E)^{(n)} \rightarrow C(E) \tag{2}
\end{equation*}
$$

natural with respect to mappings

$$
\begin{gathered}
E \xrightarrow{g} E_{1} \\
f \downarrow \stackrel{\bar{g}}{\rightarrow} \not B_{1} \\
B
\end{gathered}
$$

with $\bar{g} f=f_{1} g$. It is easy to see that ϕ has the property

$$
\begin{equation*}
\operatorname{dim} v=i, u_{j} \in F^{p_{i}} \Rightarrow \phi\left(v \otimes u_{1} \otimes \cdots \otimes u_{n}\right) \in F^{p} \tag{3}
\end{equation*}
$$

for $p \leqq$ l.i.g. $\left(\max \left(1 / n \sum_{j} p_{j}, \sum_{j} p_{j}-i\right)\right)$, where 1.i.g. (α) denotes the least integer greater than or equal to α. Defining the filtration in $V \otimes_{\pi} C^{(n)}$ according to (3) we have that ϕ preserves filtration.
3. Operations in spectral sequences. In the following we shall be working over the ground field Z_{2} instead of the integers as above. Let us choose a mapping ϕ as in (2) and keep it fixed in the following.

Let $f: E \rightarrow B$ be a mapping of css-complexes. Let $x \in F^{p} C^{p+q}$ $=F^{p} C^{p+q}(E)$. Then we define

$$
\begin{equation*}
s q^{i} x=\phi\left(e_{p+q-i} \otimes x^{2}+e_{p+q-i+1} \otimes x d x\right) \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
d s q^{i} x=s q^{i} d x \tag{5}
\end{equation*}
$$

Using standard notation we see that if $x \in Z_{r}^{p}$ then

$$
\begin{array}{ll}
s q^{i} x \in Z_{r}^{p}, & \text { for } 0 \leqq i \leqq q-r+1, \\
s q^{i} x \in Z_{2 r-1+i-q}^{p}, & \text { for } q-r+1 \leqq i \leqq q, \tag{6}\\
s q^{i} x \in Z_{2 r-1}^{p+i-q}, & \text { for } q \leqq i \leqq p+q .
\end{array}
$$

If x represents a class \bar{u} in $E_{r}^{p, q}$ then we can examine when the class of $s q^{i} x$ is independent of the choice of representative of \bar{u}. When this is the case we can define an operation in the spectral sequence. We get for $0 \leqq i \leqq q-r+i$,

$$
S q^{i} \bar{u}=\left\{s q^{i} x\right\}: \in \mid E_{r}^{p, q \perp i} ;
$$

$$
\text { for } q-r+1 \leqq i \leqq q
$$

$$
S q^{i} \bar{u}=\left\{s q^{i} x\right\} \in E_{r+j}^{p, q+i}, \quad \text { for any } j, 0 \leqq j \leqq i-q+r-1
$$

for $q \leqq i \leqq p+q$,
$S q^{i} \bar{u}=\left\{s q^{i} x\right\} \in E_{r+j}^{p+i-q, 2 q}, \quad$ for any $j, \min (i-q, r-2) \leqq j \leqq r-1$.
These operations are natural, additive, and they commute with the differentials in the spectral sequence. Further we shall mention that if $\bar{u} \in E_{r}^{p, Q}, d_{r} \bar{u}=0$, and \bar{u} determines $\{\bar{u}\} \in E_{r+1}^{p, q}$ then

$$
\left\{S q^{i} \bar{u}\right\}=S q^{i}\{\bar{u}\} \in \begin{cases}E_{r+1}^{p, q+i} & \text { for } 0 \leqq i \leqq q \\ E_{r+1+\min (i-q, r-1)}^{p+i-q, 2 q} & \text { for } q \leqq i \leqq p+q\end{cases}
$$

Let us suppose that $E_{2}^{*, 0} \otimes E_{2}^{0, *} \rightarrow E_{2}^{*, *}$ is an isomorphism then in E_{2} we have (denoting the homomorphism $a \rightarrow a^{2}$ by ζ)

$$
\begin{array}{ll}
S q^{i}=1 \otimes S q^{i}: E_{2}^{p, q} \rightarrow E_{2}^{p, q+i}, & \text { for } 0 \leqq i \leqq q \\
S q^{i}=S q^{i-q} \otimes \zeta: E_{2}^{p, q} \rightarrow E_{2}^{p+i-q, 2 q}, & \text { for } q \leqq i \leqq p+q
\end{array}
$$

If F is the fibre (relative to some base point in B) of the mapping $f: E \rightarrow B$, then we can consider cohomology operations in F, E, and B. Since we can use the mapping ϕ (2) to define these cohomology operations, they are in an obvious way related to the spectral operations considered here.

Operations in spectral sequences have also been constructed by S. Araki [1] and R. Vazquez [3]. The operations constructed in this paper coincide with or are related to the operations constructed in these papers.
4. Some lemmas. The following lemmas are crucial in the computation of $H^{*}\left(P_{n, h}\right)$.

Remark. Let $f: E \rightarrow B$ be a map of css-complexes and let $\left\{E_{r}, d_{r}\right\}$ be the corresponding spectral sequence. Let $\alpha \in E_{n}^{0, n-1}, \beta \in E_{n}^{n, 0}$, and $\gamma \in E_{n}^{0,2(n-1)}(n \geqq 2)$ with $d_{n} \alpha=\beta, d_{n} \gamma=\alpha \beta$. Let $E_{j}^{2 n-j, j-1}=0, j=2,3$, $\cdots, n-1$. Then there exist cochain representatives u, v, and x of α, β, and γ respectively with the property

$$
d x=u v+a
$$

with $a \in F^{2 n-1} C^{2 n-1}$ (we shall say that a is in the base. In general we shall say that any cochain belonging to $\sum_{j} F^{j} C^{j}$ is in the base.)

Lemma. Let $\alpha \in E_{n}^{0, n-1}, \beta \in E_{n}^{n, 0}$, and $\gamma \in E_{n}^{0,2(n-1)}$ be elements in the spectral sequence $\left\{E_{r}, d_{r}\right\}$ associated with a css-map $f: E \rightarrow B$. Let u, v, and x be cochains representing α, β, and γ respectively with the properties
$d u=v, d x=u v+a$, where a is in the base. Then

$$
\tau^{(2 k+1)}=S q^{2 k+1} \gamma+\sum_{\sigma=0}^{k} S q^{\sigma} \alpha S q^{2 k+1-\sigma} \alpha, \quad 0 \leqq k<n-1
$$

is transgressive, while

$$
\boldsymbol{\tau}^{(2 k)}=S q^{2 k} \gamma+\sum_{\sigma=0}^{k-1} S q^{\sigma} \alpha S q^{2 k-\sigma} \alpha, \quad 0<k \leqq n-1
$$

persists to E_{n+k} and has

$$
d_{n+k}\left\{\tau^{(2 k)}\right\}=\left\{S q^{k} \alpha \cdot S q^{k} \beta\right\}
$$

Furthermore there are cochains u_{1}, v_{1}, and x_{1} representing $S q^{k} \alpha, S q^{k} \beta$, and $\tau^{(2 k)}$ respectively such that

$$
d u_{1}=v_{1} \quad \text { and } \quad d x_{1}=u_{1} v_{1}+a_{1},
$$

where a_{1} is in the base. (The existence of u_{1}, v_{1}, x_{1}, and a_{1} with this property clearly implies (2).)

Also

$$
\gamma \cdot d_{n}(\gamma)=\gamma \alpha \beta \in E_{n}^{n, 3(n-1)}
$$

is transgressive (i.e., persists till $E_{3 n-2}$).
Lemma. Let $\alpha \in E_{n}^{0, n-1}, \beta \in E_{n}^{n, 0}$, and $\gamma \in E_{n}^{0,2^{h_{n-2}}}(n \geqq 2, h \geqq 2)$ be elements in the spectral sequence $\left\{E_{r}, d_{r}\right\}$ associated with a css-map $f: E \rightarrow B$. Let u, v, and x be cochains representing α, β, and γ respectively with the properties $d u=v, d x=u v^{2^{h}}+a$ where a is in the base. Then

$$
S q^{k} \gamma, \quad k \leqq 2^{h} n-2
$$

is transgressive if n is not divisible by 2^{h}. If $k=s \cdot 2^{h}$, then

$$
S q^{k} \gamma=S q^{s .2^{h}} \gamma
$$

persists to $E_{\left(2^{h}-1\right)(n+s)}$ and has

$$
d_{\left(2^{h}-1\right)(n+s)}\left\{S q^{s \cdot 2^{h}} \gamma\right\}=\left\{S q^{s} \alpha \cdot\left(S q^{s} \beta\right)^{2^{h}-1}\right\}
$$

Furthermore there are cochains u_{1}, v_{1}, and x_{1} representing $S q^{*} \alpha, S q^{*} \beta$, and $S q^{\circ \cdot 2^{h}} \boldsymbol{\gamma}$ respectively such that

$$
d u_{1}=v_{1}, \quad d x_{1}=u_{1} v_{1}^{h_{-1}}+a_{1}
$$

with a_{1} in the base. Also

$$
\gamma \cdot d_{\left(2^{h}-1\right) n}(\gamma)=\gamma \alpha \beta^{2^{h}-1} \in E_{\left(2^{h}-1\right) n}
$$

is transgressive (i.e. persists till $\left.E_{\left(2^{h}+1\right) n-2}\right)$.
5. Computations. Using the Moore comparison theorem for spectral sequences and the above mentioned results $H^{*}\left(P_{n, h}\right)$ can be derived. We shall use the usual notation and properties of sequences $I=\left(a_{1}, a_{2}, \cdots, a_{r}\right)$ of non-negative integers (see e.g. Serre [2]). In particular we use the notation

$$
L(d, h)=\left(2^{h-1} d, 2^{h-2} d, \cdots, d\right)
$$

Theorem. Let $P_{n}=P\left(Z_{2}, n ; Z_{2}, 2 n-1, \epsilon_{n}^{2}\right)$. For each admissible sequence $J, e(J) \leqq 2(n-1)$, containing odd components and each admissible sequence $N, e(N)<n-1$, there are classes $\beta(J)$ and $\gamma(2 N)$ in $H^{*}\left(P_{n}\right)$ of dimensions $2 n-1+\operatorname{deg} J$ and $2(2 n-1+2$ deg $N)$ respectively, satisfying

$$
\beta(J)=S q^{\bar{J}}\left(\beta\left((2 j+1) J_{1}\right)\right)
$$

whenever $J=\bar{J}(2 j+1) J_{1}$ with all components of J_{1} even. Let α be the nonzero class in $H^{*}\left(P_{n}\right)$, then

$$
H^{*}\left(P_{n}\right)=Z_{2}[\{\beta(J)\}] \otimes \Lambda\left(\left\{S q^{I} \alpha\right\}\right) \otimes Z_{2}\left[\left\{S q^{L(4(n-1+\operatorname{deg} N), h)} \gamma(2 N)\right\}\right]
$$

where $h=0,1, \cdots$ and where J, I, and N run through all admissible sequences satisfying $e(J) \leqq 2(n-1), e(I) \leqq n-1$, and $e(N)<n-1$; further it is required that J contains odd components.

Theorem. Let $P_{n, h}=P\left(Z_{2}, n ; Z_{2}, 2^{h} n-1, \epsilon_{n}^{2^{h}}\right)(n \geqq 2, h \geqq 2)$. For each admissible sequence $J, e(J) \leqq 2^{h} n-2, J \neq 0\left(\bmod 2^{h}\right)$, and for each admissible sequence I, $e(I) \leqq n-1$, there are classes $\beta(J)$ and $\gamma(I)$ in $H^{*}\left(P_{n, h}\right)$ of dimensions $2^{h} n-1+\operatorname{deg} J$ and $2^{h+1}(n+\operatorname{deg} I)-2$ respectively, satisfying

$$
\beta(J)=S q^{\bar{J}}\left(\beta\left((j) J_{1}\right)\right)
$$

whenever $J=\bar{J}(j) J_{1}$ with $j \neq 0\left(\bmod 2^{h}\right)$ and $J_{1} \equiv 0\left(\bmod 2^{h}\right)$. Let α be the nonzero class in $H^{n}\left(P_{n, h}\right)$ then

$$
H^{*}\left(P_{n, h}\right)=Z_{2}[\{\beta(J)\}] \otimes Z_{2}\left[\left\{S q^{I} \alpha\right\}, 2^{h}\right] \otimes Z_{2}[\{\gamma(I)\}]
$$

where $Z_{2}\left[\left\{x_{i}\right\}, 2^{h}\right]$ denotes the truncated polynomial algebra of height 2^{h} in the generators $\left\{x_{i}\right\}\left(x_{i}^{2^{h}}=0\right)$, and where J and I run through all admissible sequences satisfying $e(J) \leqq 2^{h} n-2, J \neq 0\left(\bmod 2^{h}\right)$, and $e(I) \leqq n-1$.

It is of some interest to get the complete action of the Steenrod algebra A^{*} in $H^{*}\left(P_{n, h}\right)$. At the present, however, we only have scattered information about this action of A^{*}.

A detailed account will appear elsewhere.

References

1. S. Araki, Steenrod reduced powers in the spectral sequence associated with a fibering. I, II, Mem. Fac. Sci. Kyūsyū Univ. vol. 11 (1957) pp. 15-64, 81-97.
2. J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. vol. 27 (1953) pp. 198-232.
3. R. Vazquez, Note on Steenrod squares in the spectral sequence of a fibre space, Bol. Soc. Mat. Mexicana (2) vol. 2 (1957) pp. 1-8.

University of Chicago

