MAGNITUDE OF THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS OF NEGATIVE DIMENSION

BY JOSEPH LEHNER

Communicated by L. Bers, July 21, 1961

1. Let Γ be an H-group, i.e., Γ is a group of linear transformations of the upper half-plane \mathfrak{H} on itself that is discontinuous in \mathfrak{H}, not discontinuous at any real point, possesses translations, and admits a fundamental region bounded by a finite number of sides. Let F be regular in \mathfrak{H} and at the parabolic vertices of Γ, and

$$
\begin{equation*}
F(V \tau)=\epsilon(V)(c \tau+d)^{r} F(\tau) \quad V(\dot{c} \dot{d}) \in \Gamma, \tau \in \mathscr{H}, \tag{1}
\end{equation*}
$$

where ϵ is a multiplier system for Γ and $-r$. Then F has a Fourier series:

$$
\begin{equation*}
F(\tau)=\sum_{m=0}^{\infty} a_{m} e((m+\alpha) \tau / \lambda), \quad \operatorname{Im} \tau>0 \tag{2}
\end{equation*}
$$

where $e(u)=\exp (2 \pi i u) ; \alpha$ and λ are defined below.
The order of magnitude of the Fourier coefficients a_{m} has been actively investigated for many years. Recently Petersson [2] gave estimates for forms of small negative dimension ($0<r<2$), a range inaccessible by the usual methods. He proved:

$$
\begin{array}{ll}
a_{m}=O\left(m^{r / 2}\right), \quad 0<r<2, \quad r \neq 2^{-h} & \text { for } h=0,1,2, \cdots ; \tag{3}\\
a_{m}=O\left(m^{r / 2} \log ^{r / 2} m\right), \quad r=2^{-h} & \text { for } h=0,1,2, \cdots
\end{array}
$$

The object of this note is a slight improvement of these estimates. We shall show that (4) is superfluous and that, in fact,

$$
\begin{equation*}
a_{m}=O\left(m^{r / 2}\right) \tag{5}
\end{equation*}
$$

holds for all r in the range $0<r<2$.
2. We shall use our variant of the circle method (cf. [1]). Since we are interested in the Fourier coefficients (i.e., expansion coefficients at $i \infty$), it is necessary to modify the method slightly. (Also we write $-r$ for the dimension of the form, while in [1] we wrote r.) Select a fundamental region R_{0} with cusp at $p_{0}=i \infty$; denote the remaining inequivalent cusps in R_{0} by p_{1}, \cdots, p_{s}. Let $S_{0}=(1 \lambda \mid 01), \lambda>0$, generate the subgroup of Γ fixing ∞, and let $\epsilon(S)=e(\alpha), 0 \leqq \alpha<1$. Define λ_{j} and α_{j} correspondingly for $j=1, \cdots, s$. We have the expansions, valid in $\left|t_{j}\right|<1,|t|<1$:

$$
\begin{array}{lr}
\left(A_{j} \tau\right)^{-r} t_{j}^{-\alpha_{j}} F(\tau)=f_{j}\left(t_{j}\right)=\sum_{m=0}^{\infty} a_{m}^{(j)} t_{j}^{m}, & t_{j}=e\left(A_{j} \tau / \lambda_{j}\right), j>0 \\
e(-\alpha \tau / \lambda) F(\tau)=f(t)=\sum_{m=0}^{\infty} a_{m} t^{m}, & t=e(\tau / \lambda), j=0
\end{array}
$$

with $A_{j}=\left(0-1 \mid 1-p_{j}\right), j>0 ; A_{0}=(10 \mid 01)$. In terms of f_{j}, f, the transformation equation (1) can be written
(6) $f(e(w / \lambda))=\eta \cdot \epsilon^{-1}(V)\left(c_{j} w+d_{j}\right)^{-r} e\left(\alpha_{j} w^{\prime} / \lambda_{j}-\alpha w / \lambda\right) f_{j}\left(e\left(w^{\prime} / \lambda_{j}\right)\right)$
for $j=0,1, \cdots, s, w=A_{j} V w=\left(a_{j} w+b_{j}\right) /\left(c_{j} w+d_{j}\right)$, and $|\eta|=1$.
From (6) we now have

$$
\begin{equation*}
\lambda a_{m}=\int_{L} f(e(w / \lambda)) e(-m w / \lambda) d w \tag{7}
\end{equation*}
$$

L being the segment: $0 \leqq x<\lambda, y=N^{-2}, N>0, w=x+i y$. From [1] we take the following facts:

$$
\begin{equation*}
L=\underset{j=-1}{U} \underset{V \in M_{j}}{U} I_{j}(V) \tag{8}
\end{equation*}
$$

where for $j=0, \cdots, s, I_{j}(V)$ is the interval

$$
\left(-d_{j} / c_{j}-x_{1}+i N^{-2},-d_{j} / c_{j}+x_{1}+i N^{-2}\right)
$$

where $x_{1}<2 c_{j}^{-1} N^{-1} h^{-1 / 2} ; I_{-1}(V)$ is a finite union of intervals. (Note that the range $j=0, \cdots, s$ corresponds to $j=1, \cdots, s$ in $[1] ; j=0$ must be included here because $p_{0}=i \infty$ is a cusp of R_{0}. What we denote here by I_{-1} and M_{-1} were called I_{0} and M_{0} in [1].) Here $h>0$ depends only on $\Gamma . M_{j}=M_{j}(N), j \geqq 0$, is the finite set

$$
M_{j}=\left\{V \in \Gamma \mid 0<c_{j}<N h^{-1 / 2},-\kappa / N \leqq-d_{j} / c_{j}<\lambda+\kappa / N\right.
$$

$$
\begin{equation*}
\left.0 \leqq a_{j} / c_{j}<\lambda\right\}, \quad \kappa=\left(1 / c_{j}^{2}-N^{-2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\sum_{j=-1}^{\dot{1}} \sum_{V \in M_{j}}\left|I_{j}(V)\right|=\lambda, \quad\left|I_{j}\right|=\text { length of } I_{j} \tag{10}
\end{equation*}
$$

Finally, $\operatorname{Im} w^{\prime} \geqq h$ for w on $I_{j}, j \geqq 0$, and $0<h_{0}<\operatorname{Im} w^{\prime}<h_{1}$ for w on I_{-1}.

We are now prepared to estimate a_{m} from (7). Using the partition (8) we get

$$
\lambda a_{m}=\sum_{j=0}^{\dot{s}} \sum_{V \in M_{j}} \int_{I_{j}(V)}+\sum_{V \in M_{-1}} \int_{I_{-1}}\{f(e(w / \lambda)) e(-m w / \lambda) d w\}=T_{1}+T_{2} .
$$

In the integrals of T_{1} apply (6):

$$
\begin{gathered}
\left|T_{1}\right| \leqq \exp \left(C m N^{-2}\right) \cdot \sum_{j=0}^{\dot{m}} \sum_{V \in M_{j}} \int_{I_{j}}\left|c_{j} w+d_{j}\right|^{-r} \\
\cdot \exp \left(-C \operatorname{Im} w^{\prime}\right)\left|f_{j}\left(e\left(w^{\prime} / \lambda_{j}\right)\right)\right| d x,
\end{gathered}
$$

where C denotes a general constant independent of m and N. Since $\operatorname{Im} w^{\prime} \geqq h>0, f_{j}$ is bounded on I_{j}, so that

$$
\left|T_{1}\right| \leqq C \exp \left(C m N^{-2}\right) \sum_{j=0}^{\dot{v}} \sum_{V \in M_{j}} \int_{I_{j}}\left|c_{j} w+d_{j}\right|^{-r} d x .
$$

We estimate trivially:

$$
\begin{aligned}
\int_{I_{j}}\left|c_{j} w+d_{j}\right|^{-r} d x & =2 \int_{0}^{x_{1}}\left|c_{j}^{2} u^{2}+c_{j}^{2} N^{-4}\right|^{-r / 2} d u<2 c_{j}^{-r} \int_{0}^{N^{-2}} N^{2 r} d u \\
& +2 c_{\xi^{-r}} \int_{N^{-2}}^{c^{-1} N^{-1}} u^{-r} d u=O\left(c^{-r} N^{2 r-2}\right)+O\left(c^{-1} N^{r-1}\right)
\end{aligned}
$$

provided $N^{-2}<x_{1}$; otherwise the left member is already dominated by the first integral after the inequality sign. Hence

$$
\left|T_{1}\right| \leqq C \exp \left(C m N^{-2}\right) \sum_{j=0}^{\dot{s}} \sum_{V \in \mathcal{M}_{j}}\left\{c^{-r} N^{2 r-2}+c^{-1} N^{r-1}\right\}
$$

The inner sum is, from (9), less than a sum over (c_{j}, d_{j}) with $0<c_{j}$ $<N h^{-1 / 2},-\alpha \leqq-d_{j} / c_{j}<\beta$, where α, β are positive constants depending on Γ and N. Hence we have

$$
\sum_{V \in \mathcal{M}_{j}} c^{-a}=O\left(N^{2-a}\right), \quad 0<a<2
$$

(cf. [2, (3.8)]), an estimate that in essence goes back to Poincaré. For each $m \geqq 1$ choose $N=m^{1 / 2}$ and use (10); we get $T_{1}=O\left(m^{r / 2}\right)$.

By similar arguments we can show $T_{2}=O\left(m^{\gamma / 2}\right)$, and this gives the desired estimate (5) for all r in $0<r<2$.
3. The method can be applied also when $r \geqq 2$. It yields

$$
\begin{array}{ll}
a_{m}=O(m \log m), & r=2, \\
a_{m}=O\left(m^{r-1}\right), & r>2 .
\end{array}
$$

These estimates also appear in Petersson's paper.

References

1. J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups. II, Michigan Math. J. vol. 6 (1959) pp. 173-193.
2. H. Petersson, Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math vol. 9 (1958) pp. 176-182.

Michigan State University

