MAGNITUDE OF THE FOURIER COEFFICIENTS OF AUTO-MORPHIC FORMS OF NEGATIVE DIMENSION

BY JOSEPH LEHNER

Communicated by L. Bers, July 21, 1961

1. Let Γ be an *H*-group, i.e., Γ is a group of linear transformations of the upper half-plane \mathfrak{K} on itself that is discontinuous in \mathfrak{K} , not discontinuous at any real point, possesses translations, and admits a fundamental region bounded by a finite number of sides. Let *F* be regular in \mathfrak{K} and at the parabolic vertices of Γ , and

(1)
$$F(V\tau) = \epsilon(V)(c\tau + d)^{\tau}F(\tau) \qquad V(\dot{c}\dot{d}) \in \Gamma, \tau \in \mathfrak{K},$$

where ϵ is a multiplier system for Γ and -r. Then F has a Fourier series:

(2)
$$F(\tau) = \sum_{m=0}^{\infty} a_m e((m + \alpha)\tau/\lambda), \qquad \text{Im } \tau > 0,$$

where $e(u) = \exp(2\pi i u)$; α and λ are defined below.

The order of magnitude of the Fourier coefficients a_m has been actively investigated for many years. Recently Petersson [2] gave estimates for forms of small negative dimension (0 < r < 2), a range inaccessible by the usual methods. He proved:

(3) $a_m = O(m^{r/2}), \quad 0 < r < 2, \quad r \neq 2^{-h}$ for $h = 0, 1, 2, \cdots$; (4) $a_m = O(m^{r/2} \log^{r/2} m), \quad r = 2^{-h}$ for $h = 0, 1, 2, \cdots$.

The object of this note is a slight improvement of these estimates. We shall show that (4) is superfluous and that, in fact,

$$(5) a_m = O(m^{r/2})$$

holds for all r in the range 0 < r < 2.

2. We shall use our variant of the circle method (cf. [1]). Since we are interested in the Fourier coefficients (i.e., expansion coefficients at $i\infty$), it is necessary to modify the method slightly. (Also we write -r for the dimension of the form, while in [1] we wrote r.) Select a fundamental region R_0 with cusp at $p_0=i\infty$; denote the remaining inequivalent cusps in R_0 by p_1, \dots, p_s . Let $S_0 = (1\lambda|01), \lambda > 0$, generate the subgroup of Γ fixing ∞ , and let $\epsilon(S) = e(\alpha), 0 \le \alpha < 1$. Define λ_j and α_j correspondingly for $j=1, \dots, s$. We have the expansions, valid in $|t_j| < 1, |t| < 1$: JOSEPH LEHNER

$$(A_{j}\tau)^{-\tau}t_{j}^{-\alpha_{j}}F(\tau) = f_{j}(t_{j}) = \sum_{m=0}^{\infty} a_{m}^{(j)}t_{j}^{m}, \qquad t_{j} = e(A_{j}\tau/\lambda_{j}), j > 0,$$
$$e(-\alpha\tau/\lambda)F(\tau) = f(t) = \sum_{m=0}^{\infty} a_{m}t^{m}, \qquad t = e(\tau/\lambda), j = 0,$$

with $A_j = (0 - 1 | 1 - p_j), j > 0; A_0 = (1 0 | 0 1)$. In terms of f_j, f , the transformation equation (1) can be written

(6)
$$f(e(w/\lambda)) = \eta \cdot \epsilon^{-1}(V)(c_j w + d_j)^{-r} e(\alpha_j w'/\lambda_j - \alpha w/\lambda) f_j(e(w'/\lambda_j))$$

for $j=0, 1, \cdots, s$, $w'=A_j Vw = (a_jw+b_j)/(c_jw+d_j)$, and $|\eta|=1$. From (6) we now have

(7)
$$\lambda a_m = \int_L f(e(w/\lambda))e(-mw/\lambda)dw,$$

L being the segment: $0 \le x < \lambda$, $y = N^{-2}$, N > 0, w = x + iy. From [1] we take the following facts:

(8)
$$L = \bigcup_{j=-1}^{t} \bigcup_{V \in M_j} I_j(V),$$

where for $j = 0, \dots, s, I_j(V)$ is the interval

$$(-d_j/c_j - x_1 + iN^{-2}, -d_j/c_j + x_1 + iN^{-2}),$$

where $x_1 < 2c_j^{-1}N^{-1}h^{-1/2}$; $I_{-1}(V)$ is a finite union of intervals. (Note that the range $j=0, \dots, s$ corresponds to $j=1, \dots, s$ in [1]; j=0 must be included here because $p_0=i\infty$ is a cusp of R_0 . What we denote here by I_{-1} and M_{-1} were called I_0 and M_0 in [1].) Here h>0 depends only on Γ . $M_j=M_j(N), j\geq 0$, is the finite set

$$M_{j} = \{ V \in \Gamma \mid 0 < c_{j} < Nh^{-1/2}, -\kappa/N \leq -d_{j}/c_{j} < \lambda + \kappa/N ,$$

$$(9) \qquad 0 \leq a_{j}/c_{j} < \lambda \}, \qquad \kappa = (1/c_{j}^{2} - N^{-2})^{1/2}.$$

Moreover

(10)
$$\sum_{j=-1}^{\bullet} \sum_{V \in M_j} |I_j(V)| = \lambda, \quad |I_j| = \text{length of } I_j.$$

Finally, $\operatorname{Im} w' \ge h$ for w on I_j , $j \ge 0$, and $0 < h_0 < \operatorname{Im} w' < h_1$ for w on I_{-1} .

604

We are now prepared to estimate a_m from (7). Using the partition (8) we get

$$\lambda a_{m} = \sum_{j=0}^{s} \sum_{V \in M_{j}} \int_{I_{j}(V)} + \sum_{V \in M_{-1}} \int_{I_{-1}} \{f(e(w/\lambda))e(-mw/\lambda)dw\} = T_{1} + T_{2}.$$

In the integrals of T_1 apply (6):

$$|T_1| \leq \exp(CmN^{-2}) \cdot \sum_{j=0}^s \sum_{V \in M_j} \int_{I_j} |c_j w + d_j|^{-r}$$
$$\cdot \exp(-C \operatorname{Im} w') |f_j(e(w'/\lambda_j))| dx,$$

where C denotes a general constant independent of m and N. Since Im $w' \ge h > 0$, f_j is bounded on I_j , so that

$$|T_1| \leq C \exp(CmN^{-2}) \sum_{j=0}^{s} \sum_{V \in M_j} \int_{I_j} |c_j w + d_j|^{-r} dx.$$

We estimate trivially:

$$\int_{I_j} |c_j w + d_j|^{-r} dx = 2 \int_0^{x_1} |c_j^2 u^2 + c_j^2 N^{-4}|^{-r/2} du < 2c_j^{-r} \int_0^{N^{-2}} N^{2r} du + 2c_j^{-r} \int_{N^{-2}}^{c^{-1} N^{-1}} u^{-r} du = O(c^{-r} N^{2r-2}) + O(c^{-1} N^{r-1}),$$

provided $N^{-2} < x_1$; otherwise the left member is already dominated by the first integral after the inequality sign. Hence

$$|T_1| \leq C \exp(CmN^{-2}) \sum_{j=0}^{s} \sum_{V \in M_j} \{c^{-r}N^{2r-2} + c^{-1}N^{r-1}\}.$$

The inner sum is, from (9), less than a sum over (c_j, d_j) with $0 < c_j < Nh^{-1/2}$, $-\alpha \leq -d_j/c_j < \beta$, where α , β are positive constants depending on Γ and N. Hence we have

$$\sum_{V \in M_j} c^{-a} = O(N^{2-a}), \qquad 0 < a < 2$$

(cf. [2, (3.8)]), an estimate that in essence goes back to Poincaré. For each $m \ge 1$ choose $N = m^{1/2}$ and use (10); we get $T_1 = O(m^{r/2})$.

By similar arguments we can show $T_2 = O(m^{r/2})$, and this gives the desired estimate (5) for all r in 0 < r < 2.

3. The method can be applied also when $r \ge 2$. It yields

JOSEPH LEHNER

$$a_m = O(m \log m),$$
 $r = 2,$
 $a_m = O(m^{r-1}),$ $r > 2.$

These estimates also appear in Petersson's paper.

References

1. J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups. II, Michigan Math. J. vol. 6 (1959) pp. 173-193.

2. H. Petersson, Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math vol. 9 (1958) pp. 176-182.

MICHIGAN STATE UNIVERSITY

606