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If E(z) is an entire function which satisfies 

(1) I E(i) | < | E(z) | 

for y>0 (z — x+iy), let 3C(E) be the corresponding Hubert space of 
entire functions F(z) such that 

IMI2 = ƒ \F{t)/E{t)\Ht< oo 

and 

I F(z) |* g | | F |K | E(z) |» - | E(z) | 2 ] / [2«( i - z)] 

for all complex z. The space is introduced in [7], where it is character­
ized by three axioms. If E(a, z) and E(b> z) are entire functions which 
satisfy (1), then 3C(E(&)) will be contained isometrically in 3C(E(b)) 
if these functions satisfy the hypotheses of Theorem VII of [8]. 
Isometric inclusions of spaces of entire functions are a basic idea in 
[9] and [lO]. A fundamental property of these inclusions has only 
now become available. 

THEOREM I. IfE(a,z), E(b,z), and E(c,z) are entire f unctions which 
satisfy (1) and have no real zeros, and if 3C(E(a)) and 3C(E(b)) are con-
tained isometrically in 3C(E(c)), then either 3C(E(a)) contains 3C(E(b)) 
or 3C(E(6)) contains 5C(E(a)). 

The formal proof depends on techniques of [2 ] and [3 ] for handling 
difference quotients. To make it precise, one must show that if f(z) 
and g (z) are entire functions of minimal exponential type such that 

I #(*)«(*) I ^ 1/(2)1 + U*)l 
for all complex 0, then f(z)g(z) vanishes identically. This is proved 
by a method of Carleman, for whose explanation we are indebted to 
M. Heins [ l6] . By Theorem III of [lO], the theorem has applications 
for certain kinds of integral transforms. 

THEOREM I I . Let u(x) and v(x) be square integrable f unctions defined 
in [O, l ] , such that 

ü(x)v(%) = v{x)u{x) 

a.e.y and which are essentially linearly independent when restricted to 
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any subinterval of [O, l ] . Let T be the bounded linear transformation of 
L2(0, 1) into itself defined by T: g—>ƒ if 

f(x) = f g{t)[u{x)v{t) - v(x)ü(t)]dt 
J x 

for almost all values of x. Let 'M be a closed subspace of L2(0, 1) which 
is invariant under T in the sense that Tg belongs to 9TC whenever g be­
longs to 9TC. Then y SflZ is characterized by a number a in [0, 1 ] and coin-
cides with the set of functions which vanish a.e. for x^a. 

The same conclusion is available from the work of Kalisch [17] 
when u{x) and v(x) satisfy additional differentiability conditions. 
The point of Theorem II is that no such restrictions are necessary. 
Theorem II may be used to give a proof of uniqueness in the inverse 
Sturm-Liouville problem studied by Levinson [19]. 

THEOREM I I I . Let \p(x) be a uniformly continuous, increasing func­
tion of real x such that 

f (1 + /2)-1 |M) - rt\Ht < oo 

for some number r > 0 . If 0<a<r, then there is a measure ix of finite 
total variation, supported in the points t where \p(t)z=0 modulo ir, such 
that feixtdfx(t) vanishes in [—a, a] and does not vanish identically. 
Furthermore, the measure may be chosen of this special form: There is 
an entire function S(z) of exponential type a which is real for real z and 
has only real simple zeros, all at points t where \{/{t) = 0 modulo w, and 

(2) ƒ (l + / t ) - M o g + | 5 ( 0 | * < «o 

and 

£ |s'(0h< *. 
S « ) - 0 

The measure pt is supported in the zeros of S(z) and has mass 5,(^)~1 

at each such zero t. 

The formal part of the proof depends on the formula of [ó] to 
obtain a measure, and on the convexity methods of [4] and [5] to 
obtain an entire function. To implement these procedures, we use a 
theorem of Beurling and Malliavin [20]: If K(z) is an entire function 
of exponential type which satisfies (2), then for each a > 0 there is a 
nonzero entire function F(z) of exponential type a, bounded on the 
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real axis, such that K(z)F(z) is bounded on the real axis. Under the 
hypotheses of Theorem III , an entire function of minimal exponen­
tial type, which remains bounded on the set of points t where ^ ( 0 = 0 
modulo 7T, is necessarily a constant. We should like to acknowledge 
our indebtedness to Chapter VIII of Levinson [18], which suggested 
the above theorem. The results of Levinson, Chapter IX, can be 
significantly bettered on using another theorem of Levinson, as it is 
formulated in fs]. The trick is to use Theorem XII of [9] to convert 
a result on nonvanishing Fourier transforms into an existence theo­
rem for entire functions of minimal exponential type. 

THEOREM IV. Let (ani bn) be a sequence of disjoint intervals to the 
right of x=l with lengths bn — an bounded away from zero and with 

2 (*n - dnYa^bn1 = °° . 

Then there exists an entire function of minimal exponential type which 
remains bounded on the real complement of U(aw, bn) and is not a con­
stant. 
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