ON THE REPRESENTATION PROBLEM FOR STATIONARY STOCHASTIC PROCESSES WITH TRIVIAL TAIL FIELD¹

BY D. L. HANSON

Communicated by J. L. Doob, October 30, 1961

Let $\{X_n\}$ be a real valued strictly stationary stochastic process on the probability space (Ω, Σ, P) and let $\{\xi_n\}$ be an independent sequence of random variables uniformly distributed on [0, 1] where $n=0, \pm 1, \cdots$. When does there exist a function f on the sequence $\{\xi_n\}$ such that the sequences $\{X_n\}$ and $\{f(T^n\xi)\}$ have the same probability structure where $\xi = (\cdots, \xi_{-1}, \xi_0, \xi_1, \cdots)$ and $T\xi$ $= (\cdots, \xi_0, \xi_1, \xi_2, \cdots)$ (i.e. such that the joint distribution of X_{i_1}, \cdots, X_{i_k} is the same as the joint distribution of $f(T^{i_1}\xi), \cdots, f(T^{i_k}\xi)$ for all k and all sequences i_1, \cdots, i_k ?

Let Σ_n be the smallest σ -field of subsets of Ω with respect to which X_k is measurable for all $k \leq n$ and let $\Sigma_{-\infty} = \bigcap \Sigma_n$. $\Sigma_{-\infty}$ is called the tail field of the process $\{X_n\}$ and is said to be trivial if $A \in \Sigma_{-\infty}$ implies P(A) = 0 or 1. It has been shown (see [1] and [2]) that if $\{X_n\}$ is a stationary Markov chain with a denumerable state space and whose tail field is trivial then a representation of the above type holds and in fact $f(T^n\xi) = f(\cdots, \xi_{n-1}, \xi_n)$.²

By use of a fairly simple transformation an arbitrary stationary process $\{X_n\}$ with trivial tail field can be converted to a stationary Markov process $\{Y_n\}$ with trivial tail field and from which the $\{X_n\}$ process can be recovered. Thus the seeming preoccupation with Markov processes.

The following theorem generalizes Rosenblatt's results to a class of Markov process with nondenumerable state space. \overline{P} is the stationary measure induced by the process on the state space and $P_X(A')$ is the stationary conditional probability that $X_n \in A'$ given $X_{n-1} = X$.

THEOREM. Let $\{X_n\}$, $n=0, \pm 1, \cdots$ be a real stationary Markov process such that

(i) $\Sigma_{-\infty}$ is trivial.

(ii) There exist Borel subsets A and B of the state space and a nonnegative measure ϕ on the state space such that $\overline{P}(B) > 0$, $\phi(A) > 0$, and for all $X \in B$ and $A' \subset A$ we have $P_X(A') \ge \phi(A')$.

¹ This work was performed under the auspices of the United States Atomic Energy Commission.

² A stationary Markov chain with denumerable state space has a trivial tail field if and only if it is ergodic and aperiodic.

Then if $\{\xi_n\}$ is an independent sequence of random variables uniformly distributed [0, 1] there exists a function $g = g(\dots, \xi_{-1}, \xi_0)$ such that the sequences $\{X_n\}$ and $\{g(\dots, \xi_{n-1}, \xi_n)\}$ have the same probability structure.

COROLLARY 1. In the above theorem it is sufficient to replace condition (ii) with

(iia) The state space of $\{X_n\}$ has an atom under the stationary probability \overline{P} .

COROLLARY 2. If $\{X_n\}$ is a stationary ergodic aperiodic Markov chain with a denumerable state space then conditions (i) and (ii) hold and the above theorem is true.

Detailed proofs will appear elsewhere.

References

1. M. Rosenblatt, Stationary processes as shifts of functions of independent random variables, J. Math. Mech. 8 (1959), 665–681.

2. ——, Stationary Markov chains and independent random variables, J. Math. Mech. 9 (1960), 945–949.

SANDIA CORPORATION