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of absolute continuity of Q with respect to P on <$; the conclusions 
may be strengthened by asserting Q mixing of these sequences with 
the limiting distribution function F(y), instead of only the con
vergence of the distribution functions of the averages to F(y). 
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THE EQUATION (dydx*+d*/dy2+(x2+y2)(d/dt)yu+d2u/dt2=:f, 
WITH REAL COEFFICIENTS, IS 

"WITHOUT SOLUTIONS» 
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Indeed, the equation can be written PP*(PP*)*u~fy where P is 
Lewy's operator d/dz+iz(d/dt),2 z = x+iy, and the star operation re
places the coefficients of a differential operator by their complex con
jugates. Hörmander has shown3 that, whatever be the open set 0, 
there is a function ƒ G CQ (0) such that the equation Pv = ƒ does not 
have any distribution solution »G3D'(Q). 
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