SIMULTANEOUS APPROXIMATION AND ALGEBRAIC INDEPENDENCE OF NUMBERS

BY WOLFGANG M. SCHMIDT

Communicated by Paul T. Bateman, April 14, 1962

1. The result. Write $\|\xi\|$ for the distance of a real number ξ to the nearest integer. Given a polynomial f in any number of variables, put $L(f)$ for the sum of the absolute values of its coefficients. Our main result is the following

Theorem. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a nonzero polynomial with integral coefficients and of degree d_{k} in $x_{k}(k=1, \cdots, n)$. Let $Q>0$ and $q \neq 0$ be integers and ξ_{1}, \cdots, ξ_{n} reals satisfying

$$
\begin{equation*}
|q| \leqq Q, \quad\left|\xi_{k} q\right| \leqq Q \quad(k=1, \cdots, n) \tag{1}
\end{equation*}
$$

and

$$
\begin{array}{r}
\left\|\xi_{k} q\right\| \leqq\left\|\xi_{1} q\right\|^{d_{1}} \cdots\left\|\xi_{k-1} q\right\|^{d_{k}-1} Q^{1-d_{1}-\cdots-d_{n}}\left[d_{k} 2^{d_{k}+\cdots+d_{n}+k} L(f)\right]^{-1} \tag{2}\\
(k=1,2, \cdots, n) .^{1}
\end{array}
$$

Then

$$
\begin{equation*}
\left|f\left(\xi_{1}, \cdots, \xi_{n}\right)\right| \geqq\left\|\xi_{1} q\right\|^{d_{1}} \cdots\left\|\xi_{n} q\right\|^{d_{n}} q^{-d_{1}-\cdots-d_{n} 2^{-n}} . \tag{3}
\end{equation*}
$$

Generalizing a well-known result of Liouville [1] for $n=1$ (for further references, see [4]), we obtain a

SUfFICIENT CONDITION FOR ALGEBRAIC INDEPENDENCE. Let ξ_{1}, \cdots, ξ_{n} be an n-tuple of reals such that to every $d>0$ there is an integer q with

$$
\begin{equation*}
0<\left\|\xi_{k} q\right\|<\left(\left\|\xi_{1} q\right\| \cdots\left\|\xi_{k-1} q\right\|\right)^{d} q^{1-n d} \quad(k=1,2, \cdots, n) .^{1} \tag{4}
\end{equation*}
$$

Then ξ_{1}, \cdots, ξ_{n} are algebraically independent (over the rationals).
This is true since (2) can be satisfied with

$$
Q \geqq \max \left(q,\left|\xi_{1} q\right|, \cdots,\left|\xi_{n} q\right|\right)
$$

and for every f, if (4) can be satisfied for every d.
For example, the numbers ξ_{1}, ξ_{2}, \cdots defined by

$$
\xi_{k}=\sum_{t=1}^{\infty} 2^{-(k t) t} \quad(k=1,2, \cdots)
$$

are independent. ${ }^{2}$ It suffices to show that ξ_{1}, \cdots, ξ_{n} are independent

[^0]for fixed n. Take a positive integer h with $n!\mid h$ and put $q_{h}=2^{h!}$. Then
$$
\left\|\xi_{k} q_{h}\right\|=2^{h 1} \sum_{t=h / k+1}^{\infty} 2^{-(k t)!} \quad(k=1, \cdots, n)
$$
which yields
$$
2^{h!-(h+k)!}<\left\|\xi_{k} q_{h}\right\|<2^{1+h!-(h+k)!} \quad(k=1, \cdots, n)
$$
and
$$
\left(\left\|\xi_{1} q_{k}\right\| \cdots\left\|\xi_{k-1} q_{k}\right\|\right)^{d} q_{\bar{h}}^{-n d}>2^{-n d(h+k-1)!-n d h!} \quad(k=1, \cdots, n)
$$

Hence q_{h} for $h>h(d)$ satisfies our condition, and the assertion is proved.
2. The proof. Let $Q>0, q \neq 0, p_{1}, \cdots, p_{n}$ be integers such that

$$
|q| \leqq Q, \quad\left|p_{1}\right| \leqq Q, \cdots,\left|p_{n}\right| \leqq Q
$$

Let f be a polynomial as described in the theorem, and put $L_{Q}(f)$ $=L\left(f\left(Q x_{1}, \cdots, Q x_{n}\right)\right)$.

We define now recursively a set of $2 n+1$ polynomials

$$
f_{n}, g_{n}, \cdots, f_{1}, g_{1}, f_{0}
$$

as follows:

$$
f_{n}\left(x_{1}, \cdots, x_{n}\right)=q^{d_{1}+\cdots+d_{n} f\left(x_{1} / q, \cdots, x_{n} / q\right) ; ~}
$$

if $f_{k}\left(x_{1}, \cdots, x_{k}\right)$ is already defined, let δ_{k} be the largest non-negative integer such that $\left(x_{k}-p_{k}\right)^{\delta_{k}} \mid f_{k}\left(x_{1}, \cdots, x_{k}\right)$, and then put

$$
g_{k}\left(x_{1}, \cdots, x_{k}\right)=\left(x_{k}-p_{k}\right)^{\delta_{k} f_{k}}\left(x_{1}, \cdots, x_{k}\right)
$$

and

$$
f_{k-1}\left(x_{1}, \cdots, x_{k-1}\right)=g_{k}\left(x_{1}, \cdots, x_{k-1}, p_{k}\right)
$$

It is clear that these polynomials are $\neq 0$.
From the definition,

$$
L_{Q}\left(f_{n}\right)=\sum_{i_{1}} \cdots \sum_{i_{n}}\left|a_{i_{1} \cdots i_{n}}\right| q^{d_{1}+\cdots+d_{n}-i_{1}-\cdots-i_{n}} Q^{i_{1}+\cdots+i_{n}}
$$

and hence

$$
\begin{equation*}
L_{Q}\left(f_{n}\right) \leqq Q^{d_{1}+\cdots+d_{n}} L(f) \tag{5}
\end{equation*}
$$

Assume next that, say,

$$
f_{k}\left(x_{1}, \cdots, x_{k}\right)=\sum_{i_{1}=0}^{d_{1}} \cdots \sum_{i_{k}=0}^{d_{k}} a(k)_{i_{1} \cdots i_{k}} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}
$$

and

$$
g_{k}\left(x_{1}, \cdots, x_{k}\right)=\sum_{i_{1}=0}^{d_{1}} \cdots \sum_{i_{k}=0}^{d_{k}} b(k)_{i_{1} \cdots i_{k}} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}
$$

It is then clear from the definition of g_{k} in terms of f_{k} that, for every choice of i_{1}, \cdots, i_{k-1},

$$
\sum_{i_{k}=0}^{d_{k}} a(k)_{i_{1} \ldots i_{k}} x_{k}^{i_{k}} \equiv\left(x_{k}-p_{k}\right)^{\delta_{k}} \sum_{i_{k}=0}^{d_{k}} b(k)_{i_{1} \cdots i_{k}} x_{k}^{i_{k}}
$$

An inequality of Mahler [2] states that

$$
\prod_{\sigma=1}^{s} L\left(g_{\sigma}\right) \leqq 2^{d} L\left(\prod_{\sigma=1}^{s} g_{\sigma}\right)
$$

where $g_{1}(x), \cdots, g_{s}(x)$ are polynomials in one variable and d is the degree of their product. Putting $s=2, g_{1}(x)=\left(Q x-p_{k}\right)^{\delta_{k}}, g_{2}(x)$ $=\sum_{i_{k}=0}^{d_{k}} b(k)_{i_{1} \ldots i_{k}} Q^{i_{k}} x^{i_{k}}$ and applying this inequality, we find

$$
\sum_{i_{k}=0}^{d_{k}}\left|b(k)_{i_{1} \cdots i_{k}}\right| Q^{i_{k}} \leqq 2^{d_{k}} \sum_{i_{k}=0}^{d_{k}}\left|a(k)_{i_{1} \cdots i_{k}}\right| Q^{i_{k}}
$$

This we multiply by $Q^{i_{1}+\cdots+i_{k-1}}$ and sum over all allowed i_{1}, \cdots, i_{k-1}. The result so obtained is that ${ }^{3}$

$$
\begin{equation*}
L_{Q}\left(g_{k}\right) \leqq 2^{d_{k}} L_{Q}\left(f_{k}\right) \tag{6}
\end{equation*}
$$

Successive application of (5), (6), and the easily obtained formula

$$
\begin{equation*}
L_{Q}\left(f_{k-1}\right) \leqq L_{Q}\left(g_{k}\right) \tag{7}
\end{equation*}
$$

yields

$$
\begin{equation*}
L_{Q}\left(g_{k}\right) \leqq 2^{d_{k}+\cdots+d_{n}} Q^{d_{1}+\cdots+d_{n}} L(f) \quad(k=n, \cdots, 1) \tag{8}
\end{equation*}
$$

Let now $\epsilon_{1}, \cdots, \epsilon_{n}$ be real numbers, and assume that the former inequalities for q and p_{k} are replaced by the stronger formulae

$$
\begin{equation*}
|q| \leqq Q, \quad\left|p_{k}\right| \leqq Q, \quad\left|p_{k}+\epsilon_{k}\right| \leqq Q \quad(k=1, \cdots, n) \tag{9}
\end{equation*}
$$

It follows then from the mean value theorem that

$$
\begin{aligned}
\Delta_{k} \equiv & g_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}, p_{k+1}+\epsilon_{k+1}\right) \\
& -g_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}, p_{k+1}\right) \\
= & \left.\epsilon_{k+1} \frac{\partial}{\partial x_{k+1}} g_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}, x_{k+1}\right)\right|_{x_{k+1}=p_{k+1}+\theta \epsilon_{k+1}}
\end{aligned}
$$

[^1]where θ is a certain constant satisfying $0<\theta<1$, so that also $\left|x_{k+1}\right|$ $\leqq Q$. Thus we find that
$$
\left|\Delta_{k}\right| \leqq\left|\epsilon_{k+1}\right| d_{k+1} Q^{-1} L_{Q}\left(g_{k+1}\right)
$$
and hence by (8),
\[

$$
\begin{equation*}
\left|\Delta_{k}\right| \leqq\left|\epsilon_{k+1}\right| Q^{d_{1}+\cdots+d_{n}-1} d_{k+1} 2^{d_{k+1}+\cdots+d_{n}} L(f) \tag{10}
\end{equation*}
$$

\]

Assume now that $\left|\epsilon_{k}\right| \leqq 1(k=1, \cdots, n)$ and that

$$
\begin{equation*}
\left|\epsilon_{k}\right| \leqq\left|\epsilon_{1}\right|^{d_{1}} \cdots\left|\epsilon_{k-1}\right|^{d_{k-1}} Q^{1-d_{1}-\cdots-d_{n}}\left[d_{k} 2^{d_{k}+\cdots+d_{n}+k} L(f)\right]^{-1} \tag{11}
\end{equation*}
$$

$$
(k=1, \cdots, n)
$$

We are going to show

$$
\begin{align*}
\left|f_{k}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}\right)\right| \geqq\left|\epsilon_{1}\right|^{d_{1}} \cdots & \left|\epsilon_{k}\right|^{d_{k} 2^{-k}} \tag{12}\\
& (k=0,1, \cdots, n) .
\end{align*}
$$

The formula is true for $k=0$ since $\left|f_{0}\right| \geqq 1$. If it is true for some $k<n$, then by (10) and (11),

$$
\begin{aligned}
&\left|g_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k+1}+\epsilon_{k+1}\right)-f_{k}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}\right)\right| \\
& \leqq 2^{-1}\left|f_{k}\left(p_{1}+\epsilon_{1}, \cdots, p_{k}+\epsilon_{k}\right)\right|
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left|f_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k+1}+\epsilon_{k+1}\right)\right| \\
& \quad=\left|\epsilon_{k+1} \delta^{\delta_{k+1}}\right| g_{k+1}\left(p_{1}+\epsilon_{1}, \cdots, p_{k+1}+\epsilon_{k+1}\right) \mid \\
& \quad \geqq 2^{-k-1}\left|\epsilon_{1}\right|^{d_{1}} \cdots\left|\epsilon_{k}\right|^{d_{k}}\left|\epsilon_{k+1}\right|^{\delta_{k+1}},
\end{aligned}
$$

and (12) is true for $k+1$.
The proof of the theorem is now immediate. Assume (1) and (2) to be satisfied. Put $\xi_{k} q=p_{k}+\epsilon_{k}(k=1, \cdots, n)$, where p_{k} is integral and $\left|\epsilon_{k}\right|=\left\|\xi_{k} q\right\|$. Then (1) yields (9) because Q and the p_{k} 's are integral, and (2) gives (11). We obtain

$$
\begin{aligned}
\left|q^{d_{1}+\cdots+d_{n}}\left(\xi_{1}, \cdots, \xi_{n}\right)\right| & =\left|f_{n}\left(p_{1}+\epsilon_{1}, \cdots, p_{n}+\epsilon_{n}\right)\right| \\
& \geqq\left|\epsilon_{1}\right|^{d_{1}} \cdots\left|\epsilon_{n}\right|^{d_{n} 2^{-n}},
\end{aligned}
$$

thereby proving our theorem.
I am grateful to Professor Mahler for simplifying my original proof.

References

1. J. Liouville, Sur les classes très etendus de quantites dont la valeur n'est algebriques, etc., C. R. Acad. Sci. Paris 18 (1844), 883-885, 910-911.
2. K. Mahler, An application of Jensen's formula to polynomials, Mathematika $\mathbf{7}$ (1960), 98-100.
3. J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Ann. of Math. 99 (1928), 134-141.
4. Th. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.

Columbia University

[^0]: ${ }^{1}$ For $k=1$, the product of the $\left\|\xi_{i} q\right\|$'s means 1.
 ${ }^{2}$ A similar system of algebraically independent numbers was given by von Neumann [3]. Actually von Neumann's system has the power of the continuum.

 Added in proof. Using our criterion and the sequence $q_{t}=2^{\left(t^{t}\right)}$ one can show that the numbers $\xi(x)=\sum_{t=1}^{\infty} 2^{-\left[t^{t+x}\right], 0 \leqq x<1 \text {, are algebraically independent. This exam- }}$ ple (with $0<x \leqq 1$) is due to H. Kneser (Bull. Soc. Math. Belg. 12 (1960), 23-27).

[^1]: ${ }^{3}$ A reader not familiar with Mahler's inequality should have no difficulty proving $L_{Q}\left(g_{k}\right) \leqq c_{1}(f) L_{Q}\left(f_{k}\right)$. This yields a theorem where the expression in brackets in (2) is replaced by $c_{2}(f)$, and it yields our condition for independence.

