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In this note a graph G is a finite 1-complex, and an imbedding of G 
in an orientable 2-manifold M is a geometric realization of G in M. 
The letter G will also be used to designate the set in M which is the 
realization of G. Manifolds will always be orientable 2-manifolds, and 
y(M) will stand for the genus of M. Given a graph G the genus y(G) 
of G is the smallest number y(M), for M in the collection of manifolds 
in which G can be imbedded. 

A block of G is a subgraph B of G maximal with respect to the prop
erty that removing any single vertex of B does not disconnect 5 , 
(A block with more than two vertices is a "true cyclic element" in 
Whyburn [3].) Given G there is a unique finite collection 33 of blocks 
B of G such that G = UB, 5 G 33. The collection 93 is called the block 
decomposition of G. If G is connected and 93 contains k blocks; then 
they may be listed in an order Bit • • • , Bk such that 

(1) Ui Bi is connected, and Bj+\f\\){ Bi is a vertex of G 
f o r j = l , . • - , ( * - 1). 

A 2-cell imbedding of G is an imbedding in a manifold M such that 
each component of (M—G) is an open 2-cell. (See Youngs [4]). The 
regional number 8(G) of a graph G is the maximum number of com
ponents of (M—G) for all possible 2-cell imbeddings of G. In [4] it 
was shown that if G is connected then 

(2) 5(G) = 2 - X(G) - 27(G) 

where x(G) is the Euler characteristic of G. 
The object of this note is to prove two formulas about the block 

decomposition of a connected graph G with k blocks B%, • • • , Bk: 

1 Partial support for this research was provided by the U. S. Naval Research 
Laboratory and the National Science Foundation. 
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(I) 7(G) = E 7(B,). 
1 

(II) 5(G) = l-k+J2 S(Bt). 
1 

Whereas equation (I) is intuitively expected, it is by no means a 
triviality; there is a great deal below the surface. Moreover, it has 
important applications to be made elsewhere. The proof uses two 
lemmas. 

LEMMA 1. If Gi, G2 and G are connected graphs such that G^GiUG* 
and GiC^Gz^v (a vertex of G), then 7(G) ^ Y ( G I ) + Y ( G 2 ) . 

PROOF. Let each Gi be imbedded in an orientable 2-manifold Mi 
such that 

(3) y(Mt) = y(Gd, i = 1, 2. 

For convenience, let the vertex v be designated by Vi when it is con
sidered as a vertex of Gt-, i = 1, 2. There is an open 2-cell C» in Mi with 
a simple closed boundary curve J» such that (CiVJJ"t)PiG» = z>». Iden
tify J\ of (Mi— C\) with J2 of (M2— C2) so that Vi is identified with v2. 
This provides a closed 2-manifold (Mi— Ci)U(ikf2 — C2) containing G, 
hence 

(4) 7(G) g 7 ( M ) . 

On the other hand, an easy computation involving the Euler char
acteristic shows that 

(5) y(M) = y(M1)+y(M2). 

The lemma follows immediately from (3), (4) and (5). 

LEMMA 2. If Gis a connected graph having a subgraph G\ and a block 
Gi such that G = GiVJG2, and G\C\G^v (a vertex of G), then 7(G) 
£ 7 ( G i ) + 7 ( G y . 

PROOF. First, note that under these hypotheses, G\ is a connected 
subgraph of G. Consider an imbedding of G in an orientable 2-mani
fold M such tha t 

(6) y(M) = 7(G). 

Since G2 is a block, (G^ — v) is connected. Hence G% — v lies in a com
ponent 5 of M—Gi. Using the techniques of [4, §3], take a triangula
tion r of M such that G is a subcomplex of the 1-skeleton of r and 
let T2 be the second barycentric subdivision of r. Dealing entirely 
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with T2, consider the open star R of Fr(5) , the frontier of S. The inter
section of Fr(R) and S will be s 1-spheres J i , • • • , J . where s e the 
number of components of Fr(5) . Moreover, if Q is the open star of 
U J», relative to r2, then the components of QC\R are open cylinders 
Li, • • • , L„ and Fr(L t) has two components, Ji and a subset of Gi, 
i = 1, • • • , s. In view of these facts and because G\ is connected, the 
set M — UJ ; has two components, Si and S2, where the notation is 
chosen so that 5 0 G i and S2 = S — Si. If Ni = Si, then Ni is an orien
table 2-manifold with boundary curves J i , • • • , J«. 

On capping the boundary curves Ji , • • • , J« of iVi with 2-cells 
d , • • • , Cs respectively, one obtains an orientable 2-manifold 
Mi = iViUUCi. Note that dC-Mi , hence 

(7) 7(Gi) ^ 7(J / i ) . 

Suppose P is an orientable 2-manifold with boundary curves 
Kif • • • , -K«, obtained by removing s open 2-cells from a 2-sphere. 
Select orientations on N2 and P . These selections will induce orienta
tions on Ji , • • • , J8 and Ku • • • , i£a. Identify J» with i£* so that 
the orientations match for i= 1, • • • , m. This produces an orientable 
2-manifold Mz — NiKJP. Resorting once more to the Euler character
istic (compare Ringel [l , pp. 56-57]), one finds 

(8) y(M) = y(Mi) +y(M*). 

Now consider that part of G2 which lies in N2C.M2. Since r2 is a 
second barycentric subdivision, each arc of G2 incident on v cuts pre
cisely one boundary curve Ji of N2 and cuts it exactly once. Take 
any point z>o in P — DKi. Then it is possible to join v0 with each point 
of G2nU Ji by arcs in P such that any pair of these arcs intersect only 
a t flo. These arcs, together with G^Ni, provide an imbedding of G2 
in M2f hence 

(9) 7(G2) ^ 7 ( ^ 2 ) . 

The lemma follows from (6), (7), (8) and (9). 

THEOREM 1. If G is a connected graph having k blocks Bi, • • • , Bk, 

The result is obtained by a straightforward induction using (1) 
and both lemmas. 

If a graph G is not connected suppose it has n components. Clearly 
there is a connected graph HZ) G such that H has one vertex and n 
arcs not in G. Each of these n arcs is a block of Hy and a block with 
genus zero. Consequently, the following statements are true: 
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COROLLARY 1. The genus of any graph (connected or not) is the sum 
of the genuses of its blocks. 

COROLLARY 2. The genus of a graph is the sum of the genuses of its 
components. 

THEOREM 2. If G is a connected graph having k blocks Bh • • • , Bkl 

then 5(G) - 1 ~k + YA h(B%). 

PROOF. Because of (1), 

x(G)-txW-(*- l ) . 
i 

Hence by (2), 

KG) = 2 - E x(Bi) + (* - 1) - 2y(G). 
i 

Since each block is connected, use (2) again to obtain 

8(G) = (1 + *) - E [2 - «(£«) - 2y(Bi)] - 27(G) 
l 

= (1 - *) + £, S(B,) - 2 [7(G) - E 7(£,)]. 

The result now follows from Theorem 1 which states that the last 
term vanishes. 
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