RESEARCH ANNOUNCEMENTS

Abstract

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

ADDITIVITY OF THE GENUS OF A GRAPH

BY JOSEPH BATTLE, FRANK HARARY, ${ }^{1}$ YUKIHIRO KODAMA, ${ }^{1}$ AND J. W. T. YOUNGS ${ }^{1}$

Communicated June 26, 1962
In this note a graph G is a finite 1 -complex, and an imbedding of G in an orientable 2 -manifold M is a geometric realization of G in M. The letter G will also be used to designate the set in M which is the realization of G. Manifolds will always be orientable 2-manifolds, and $\gamma(M)$ will stand for the genus of M. Given a graph G the genus $\gamma(G)$ of G is the smallest number $\gamma(M)$, for M in the collection of manifolds in which G can be imbedded.

A block of G is a subgraph B of G maximal with respect to the property that removing any single vertex of B does not disconnect B. (A block with more than two vertices is a "true cyclic element" in Whyburn [3].) Given G there is a unique finite collection \mathfrak{B} of blocks B of G such that $G=\bigcup B, B \in \mathfrak{B}$. The collection \mathfrak{B} is called the block decomposition of G. If G is connected and \mathfrak{B} contains k blocks; then they may be listed in an order B_{1}, \cdots, B_{k} such that

$$
\begin{align*}
& \bigcup_{1}^{j} B_{i} \text { is connected, and } B_{j+1} \cap \bigcup_{1}^{j} B_{i} \tag{1}\\
& \text { is a vertex of } G \\
& \\
& \text { for } j=1, \cdots,(k-1) .
\end{align*}
$$

A 2-cell imbedding of G is an imbedding in a manifold M such that each component of $(M-G)$ is an open 2-cell. (See Youngs [4]). The regional number $\delta(G)$ of a graph G is the maximum number of components of $(M-G)$ for all possible 2-cell imbeddings of G. In [4] it was shown that if G is connected then

$$
\begin{equation*}
\delta(G)=2-\chi(G)-2 \gamma(G) \tag{2}
\end{equation*}
$$

where $\chi(G)$ is the Euler characteristic of G.
The object of this note is to prove two formulas about the block decomposition of a connected graph G with k blocks B_{1}, \cdots, B_{k} :

[^0]\[

$$
\begin{align*}
\gamma(G) & =\sum_{1}^{k} \gamma\left(B_{i}\right) \tag{I}\\
\delta(G) & =1-k+\sum_{1}^{k} \delta\left(B_{i}\right) . \tag{II}
\end{align*}
$$
\]

Whereas equation (I) is intuitively expected, it is by no means a triviality; there is a great deal below the surface. Moreover, it has important applications to be made elsewhere. The proof uses two lemmas.

Lemma 1. If G_{1}, G_{2} and G are connected graphs such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=v$ (a vertex of G), then $\gamma(G) \leqq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$.

Proof. Let each G_{i} be imbedded in an orientable 2 -manifold M_{i} such that

$$
\begin{equation*}
\gamma\left(M_{i}\right)=\gamma\left(G_{i}\right), \quad i=1,2 . \tag{3}
\end{equation*}
$$

For convenience, let the vertex v be designated by v_{i} when it is considered as a vertex of $G_{i}, i=1,2$. There is an open 2-cell C_{i} in M_{i} with a simple closed boundary curve J_{i} such that $\left(C_{i} \cup J_{i}\right) \cap G_{i}=v_{i}$. Identify J_{1} of $\left(M_{1}-C_{1}\right)$ with J_{2} of $\left(M_{2}-C_{2}\right)$ so that v_{1} is identified with v_{2}. This provides a closed 2 -manifold $\left(M_{1}-C_{1}\right) \cup\left(M_{2}-C_{2}\right)$ containing G, hence

$$
\begin{equation*}
\gamma(G) \leqq \gamma(M) \tag{4}
\end{equation*}
$$

On the other hand, an easy computation involving the Euler characteristic shows that

$$
\begin{equation*}
\gamma(M)=\gamma\left(M_{1}\right)+\gamma\left(M_{2}\right) \tag{5}
\end{equation*}
$$

The lemma follows immediately from (3), (4) and (5).
Lemma 2. If G is a connected graph having a subgraph G_{1} and a block G_{2} such that $G=G_{1} \cup G_{2}$, and $G_{1} \cap G_{2}=v$ (a vertex of G), then $\gamma(G)$ $\geqq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$.

Proof. First, note that under these hypotheses, G_{1} is a connected subgraph of G. Consider an imbedding of G in an orientable 2-manifold M such that

$$
\begin{equation*}
\gamma(M)=\gamma(G) \tag{6}
\end{equation*}
$$

Since G_{2} is a block, $\left(G_{2}-v\right)$ is connected. Hence $G_{2}-v$ lies in a component S of $M-G_{1}$. Using the techniques of [4, §3], take a triangulation τ of M such that G is a subcomplex of the 1 -skeleton of τ and let τ_{2} be the second barycentric subdivision of τ. Dealing entirely
with τ_{2}, consider the open star R of $\operatorname{Fr}(S)$, the frontier of S. The intersection of $\operatorname{Fr}(R)$ and S will be $s 1$-spheres J_{1}, \cdots, J_{s} where $s \geqq$ the number of components of $\operatorname{Fr}(S)$. Moreover, if Q is the open star of $\cup J_{i}$, relative to τ_{2}, then the components of $Q \cap R$ are open cylinders L_{1}, \cdots, L_{s}, and $\operatorname{Fr}\left(L_{i}\right)$ has two components, J_{i} and a subset of G_{1}, $i=1, \cdots, s$. In view of these facts and because G_{1} is connected, the set $M-\cup J_{i}$ has two components, S_{1} and S_{2}, where the notation is chosen so that $S_{1} \supset G_{1}$ and $S_{2}=S-\bar{S}_{1}$. If $N_{i}=\bar{S}_{i}$, then N_{i} is an orientable 2 -manifold with boundary curves J_{1}, \cdots, J_{s}.

On capping the boundary curves J_{1}, \cdots, J_{s} of N_{1} with 2-cells C_{1}, \cdots, C_{s} respectively, one obtains an orientable 2 -manifold $M_{1}=N_{1} \cup \bigcup C_{i}$. Note that $G_{1} \subset M_{1}$, hence

$$
\begin{equation*}
\gamma\left(G_{1}\right) \leqq \gamma\left(M_{1}\right) \tag{7}
\end{equation*}
$$

Suppose P is an orientable 2 -manifold with boundary curves K_{1}, \cdots, K_{s}, obtained by removing s open 2 -cells from a 2 -sphere. Select orientations on N_{2} and P. These selections will induce orientations on J_{1}, \cdots, J_{s} and K_{1}, \cdots, K_{s}. Identify J_{i} with K_{i} so that the orientations match for $i=1, \cdots, m$. This produces an orientable 2-manifold $M_{2}=N_{2} \cup P$. Resorting once more to the Euler characteristic (compare Ringel [1, pp. 56-57]), one finds

$$
\begin{equation*}
\gamma(M)=\gamma\left(M_{1}\right)+\gamma\left(M_{2}\right) \tag{8}
\end{equation*}
$$

Now consider that part of G_{2} which lies in $N_{2} \subset M_{2}$. Since τ_{2} is a second barycentric subdivision, each arc of G_{2} incident on v cuts precisely one boundary curve J_{i} of N_{2} and cuts it exactly once. Take any point v_{0} in $P-\cup K_{i}$. Then it is possible to join v_{0} with each point of $G_{2} \cap \cup J_{i}$ by arcs in P such that any pair of these arcs intersect only at v_{0}. These arcs, together with $G_{2} \cap N_{2}$, provide an imbedding of G_{2} in M_{2}, hence

$$
\begin{equation*}
\gamma\left(G_{2}\right) \leqq \gamma\left(M_{2}\right) \tag{9}
\end{equation*}
$$

The lemma follows from (6), (7), (8) and (9).
Theorem 1. If G is a connected graph having k blocks B_{1}, \cdots, B_{k}, then $\gamma(G)=\sum_{1}^{k} \gamma\left(B_{i}\right)$.

The result is obtained by a straightforward induction using (1) and both lemmas.

If a graph G is not connected suppose it has n components. Clearly there is a connected graph $H \supset G$ such that H has one vertex and n arcs not in G. Each of these n arcs is a block of H, and a block with genus zero. Consequently, the following statements are true:

Corollary 1. The genus of any graph (connected or not) is the sum of the genuses of its blocks.

Corollary 2. The genus of a graph is the sum of the genuses of its components.

Theorem 2. If G is a connected graph having k blocks B_{1}, \cdots, B_{k}, then $\delta(G)=1-k+\sum_{1}^{\mathbf{k}} \delta\left(B_{i}\right)$.

Proof. Because of (1),

$$
\chi(G)=\sum_{1}^{k} \chi\left(B_{i}\right)-(k-1)
$$

Hence by (2),

$$
\delta(G)=2-\sum_{1}^{k} \chi\left(B_{i}\right)+(k-1)-2 \gamma(G)
$$

Since each block is connected, use (2) again to obtain

$$
\begin{aligned}
\delta(G) & =(1+k)-\sum_{1}^{k}\left[2-\delta\left(B_{i}\right)-2 \gamma\left(B_{i}\right)\right]-2 \gamma(G) \\
& =(1-k)+\sum_{1}^{k} \delta\left(B_{i}\right)-2\left[\gamma(G)-\sum_{1}^{k} \gamma\left(B_{i}\right)\right]
\end{aligned}
$$

The result now follows from Theorem 1 which states that the last term vanishes.

Bibliography

1. G. Ringel, Färbungsprobleme auf Flächen und Graphen, Mathematiche Monographien, 2, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959.
2. J. H. Roberts and N. E. Steenrod, Monotone transformations of two dimensional manifolds, Ann. of Math. 39 (1938), 851-862.
3. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
4. J. W. T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963), (to appear).

University of Michigan and Indiana University

[^0]: ${ }^{1}$ Partial support for this research was provided by the U. S. Naval Research Laboratory and the National Science Foundation.

