RESEARCH PROBLEMS

39. Joseph Hammer: Matrix Theory.

Given a set of n^{2} numbers (not necessarily all different), find a method to decide whether it is possible to arrange them in an $n \times n$ matrix so that the value of its determinant will be a preassigned value.
40. Richard Bellman: Algebra.

A great deal has been done on the composition of algebraic forms; (see C. C. MacDuffee, On the composition of algebraic forms of higher degree, Bull. Amer. Math. Soc. 51 (1945), 198-211).

What is the situation for matrices whose elements are algebraic forms? If $Q(x)=\left(q_{i j}(x)\right), i, j=1,2, \cdots, R, x=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$, when does a relation of the form $Q(x) Q(y)=Q(z)$ hold, where, as usual, $z_{i}=\sum_{j, k} a_{i j k} x_{j} y_{k}$ and the $a_{i j k}$ are independent of x, y, z ?

When can a given quadratic form $q(x)=(x, A x)$ be imbedded in a composition matrix so that $q(x)=q_{11}(x)$?

For $R=2$, we have relations of the form

$$
q_{11}(x) q_{11}(y)+q_{12}(x) q_{21}(y)=q_{11}(z)
$$

which means $q_{11}(x) q_{11}(y)=q_{11}(z)$ for all x such that $q_{12}(x)=0$ or for all y such that $q_{21}(y)=0$, a relative composition. When do relative compositions hold?

Received by the editors September 24, 1962.

