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Let K denote a finite extension of the rational number field and D 
the domain of algebraic integers of K. Let P be a prime ideal of D 
having norm N(P) = ph = qt where h is a positive integer and p is an 
odd rational prime number. This announcement is concerned with the 
number of solutions of the trinomial congruence, 

(1) X* + aY2~ p (modP ' ) , 

where a and p are in D with p arbitrary and (a, P) = 1, r is a positive 
integer, k is a positive integer such that (fe, p) = 1, and d~(k> q~l) 
> 1 . Let C denote an ideal of D such that (P, C) = l and PC=(d) 
is principal, and let b be the greatest integer n such that O^n^r and 
P w | p . Then we may put 

(2) p o ^ (mod P"), (>/, P) = 1, 

where t\ is uniquely determined (mod Pr~h) if 6 < r . 
In Theorems 1-8 we give formulas for the number Qr(p) of solutions 

of (1). Solvability criteria are obtained as corollaries of these theo­
rems. (We remark that if p = 0 (mod P r ) , then (1) has the trivial 
solution (0, 0).) The formulas given in this note follow directly from 
more general theorems proved for congruences (mod P r) involving 
a feth power and an arbitrary number of squares [2]. 

If r = l , the congruence (1) amounts to an equation in a Galois 
field of order q. For discussions of general trinomial congruences in a 
finite field, particular reference is made to Vandiver [7] who has 
published several pertinent papers in recent years. A number of au­
thors have considered the special case of (1) with r = l and K the 
rational field; in particular we mention Frattini [3], E. Lehmer [5], 
and Manin [6]. For a discussion of trinomial congruences in algebraic 
number fields, see Cohen's paper [ l ] . 

We need the following notation : 

(3) b = Lk + I (O^Kk); f = (~<*/P), r - ( - n / P ) , 

where (j3/P) denotes the Legendre symbol in D. 
Let Q(rj) = (?i0?) denote the number of solutions of 

(4) X* + a P • 97 (mod P) , (77, P) - 1. 
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Theorems 1-4 and 7-8 below contain explicit formulas for the num­
ber of solutions of (1), while Theorems 5 and 6 are reduction formulas 
which give the number of solutions of (1) in terms of the number of 
solutions of (4). Theorems 5 and 6 apply if d>2, p^O (mod Pr), 
6 = 0 (mod k), and bk is even; under these conditions it is not possible 
to give explicit formulas for Qr(p). Davenport and Hasse [4] have 
shown that Q(rj) *£q — (d — l) V<Z, a result which we utilize in Corol­
lary 7. 

THEOREM 1. If k is odd and r>b^0 (mod k), then Qr(p) (g*-2 - \ ) / q r ~ l 

= (g — i)(g(*/2-i)L+*-2_ J) for L even, I odd or for L even, I even, 
r f = - l ; ( g - l ) ( g ^ / 2 - i ) ^ - 2 _ 1 ) + 2 ( g f c - 2 _ 1 ) ^ / 2 - i ) L + J / 2 for L evm> 

I even, rf = 1 ; (q- 1)(2<*/*-I>(IH-I> - 1 ) for £ <,dd, ƒ ^ W j or for L odd, I 
odd, r r = ~ l ; (g~l)(g(^/2-i)(L+i)^i)+2(g f c-2-"l)^/2-1> I '+ / /2 /or L 
odd, 7 odd, rf = 1 . 

COROLLARY 1. If k is odd and 6 ^ 0 (mod k), then (1) is solvable. 

THEOREM 2. If fe = 2 arcd r > M 0 (mod 2), then Qr(p)/qr~l = 0 for 
C=-l;2(q~-l)(L + l)forC==l.Ifkiseven,k>2,andr>b^O(modk), 
then Qr(j>)(qh,2r-l-i)/crls=0 for I odd, f = - 1 , or for I even, f = - 1 
= - - r ;2 (g- - l ) (g< J f c / 2 - - 1 )^+ 1 >-- l ) /o r Jodd , r= l ,o r /o r /^m, f= l==- - r ; 
2 f fc*/2-i)L+i/J(g*/i-i- . i) /o r7C T e n >f a B 5-i a S :T ; 2 ( g - l ) ( ^ / 2 ~ 1 ) ^ + 1 ) - l ) 
^2q^^-^L+I^{qk^l-\) for I even, r = l = r . 

COROLLARY 2. If k is even and r>bj£0 (mod &), tóew (a) !ƒ 7 i s odd, 
Jfee congruence (1) is insolvable <=±J"= — 1. 

(b) /ƒ I is even, the congruence (1) is insolvable <=*f = — 1 = —r. 

THEOREM 3. /ƒ & = 2 and r > b e 0 (mod 2), tóew ( M P ) A T " 1 

« (a - 1)(1 + 2L)forÇ = 1; 5 + 1/öf f - - l.Ifd - 2 < & and 
r > 6 —0 (mod &), tóew 

Qr{p)(qkl2~l - I V J T 1 = (? - l)(g»/»-i>UrH> + 8 C * / I - I ) L _ 2) 

/of r = ;1 ( 2 + l ) 2 ( * / M ) L ( 2 * , i - 1 - l ) ƒ " f = - 1 . 

COROLLARY 3. If d = 2 and &^0 (mod fe), £ften (1) is solvable. 

THEOREM 4. /ƒ fe is odd, b is odd and r > b s 0 (mod &), J&era 
ö r ( p ) ( ^ - 2 - l ) / g r ~ 1 = ( g - l ) ( g ( A j / 2 - 1 ) ( I ' + 1 ) - l ) for rj not a kth power 
(mod P ) ; (2-l)(2(*/«-i)(ii+i)-.i)+d2(»/i-DL+i/«(2»-2_1) y ö r , a fefc 

power (mod P ) . 

COROLLARY 4. !ƒ & is odd, b is odd, and & = 0 (mod k), then (1) is 
solvable. 
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THEOREM 5. If k is even, d>2, and r>6=0 (mod k), then Qr(p)/q'~l 

«2(»/»-i)LQ(,) f0r f = _ i and 

- g»/w)/i{5»/i + q - 2 + (£(,) - <?) • (ç*"-1 - 1)} - 2(g - 1) 

for!: = 1. 

COROLLARY 5. 1/ & is even, d>2, and r>b=0 (mod k), then 
(a) Ifr=-l ,<2 r(p)=0*±0fo) = 0. 
(b) If r = 1, Q,(p) = 0?±Q(ij) - 0 and L = 0. 

THEOREM 6. If k is odd, b is even and r>b = 0 (mod k), then 

= 1 - q + 2(*/2-Di{g*-i _ 1 + (Q(,) _ q)(qk-2 _ 1)}. 

COROLLARY 6. 2/ & is odd, b is even, and r>b = 0 (mod k), then 
Qr(p) = 0+±Q(r)) = 0 and L = 0. 

Since (?(?;) e g —(d —1)\/<Z, one obtains from Corollaries 5 and 6, 

COROLLARY 7. If d>2, bk is even, and r>b=0 (mod k), then (1) 
is solvable if q>(d — iy-, moreover, (1) is solvable f or arbitrary qif L?£Q 
and k is odd, or if LT^O and f = 1. 

For completeness, the following formulas in the case 
b = r (p = 0 (mod Pr)) are also included. 

THEOREM 7. If k = 2 and &=r, tóe« (?r(p)/2,~1 = g+(g — l)r /or f = 1 ; 
g/or f = — 1, refera; 1 forÇ= — 1, r o ü . 7/fe is even, k>2 andb = r, then 
Qr(p)/qr-l = qW2-1)L+1for 1 = 0, f = - 1 ; 

|?»/i-i)£(j»/i + j _ 2) - 2(g - l ) } / ^* ' 2 - 1 - 1) /or J = 0, f = 1; 

q»l*-»z+*l*forleoen, I>0, f= - 1 ; 2»/*-u*+tf-i>/« /or / o u , f= - 1 ; 
J 2 (* ; 2 - i ) z , ( g * /2 + 2 _2)_2( g - l ) } / ( 2 * /2 - i - l )+ 2 (* /2 - i ) i (2 i /2+ g _2) /or 
J eve», I>0, r=l; {g<*,2-1)L(g*/2+g-2)-2(g-l)}/(2*'2-1-i) 
+ 2 » /» - i ) i ( 2 (x - i ) /«+ g _2) /or J odd, f = 1. 

THEOREM 8. 7/ k is odd and b = r, then 

QM/q*-1 = {q«l*-»i(q>-i - 1) - q + l}/(g*~2 - 1) 

{2<*/2-i)i,(2)b-i_ !) _ 2 + 1 J / ( 2 *-2 -1 ) +2c*/t- i)£(2a-i) / i_ i) / o r L eoeHt 

I odd; {q«li-»L(q'>-sli+q,°l*-qkl*-1-q1l>i)-q+l}/(.qk-2-l)forLodd, 
1 = 0 ; 
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{g(*/2-l)L(2*-8/2 + qk/2 _ gfc/2-1 _ ? l /2) - j + l } / ( ^ ~ 2 ~ 1) 

J^(A:/2~l)L(^-3/2 + g*/2 _ ^/2~1 _ g l /2) _ q + l}/(^~2 _ J) 

+ 8c*/i-i)ir+i/j(8cr-i)/i - i) f0r L odd, I odd. 

We now apply the formulas to a few examples, letting K be the 
rational field. X 3 + F 2 E = 2 - 7 3 (mod 74) has 2,058 solutions by Theo­
rem 4; X 4 + 2 F 2 - 2 5 (mod 125) has no solutions by Corollary 2; 
X 4 + F 2 = 3-54 (mod 56) has 5,000 solutions by Theorem 5; X 6 + F 2 

^ 6 - 7 6 (mod V) has no solutions by Corollary 5. 
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