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Let K denote a finite extension of the rational number field and D
the domain of algebraic integers of K. Let P be a prime ideal of D
having norm N(P)=p"*=¢q, where % is a positive integer and p is an
odd rational prime number. This announcement is concerned with the
number of solutions of the trinomial congruence,

1) X* 4+ a¥? = p (mod P7),

where a and p are in D with p arbitrary and (e, P) =1, r is a positive
integer, k is a positive integer such that (%, p) =1, and d=(k, ¢—1)
>1. Let C denote an ideal of D such that (P, C)=1 and PC=()
is principal, and let b be the greatest integer # such that 0S# <7 and
P”I p. Then we may put

(2) p =6 (mod P), (n, P) =1,

where 7 is uniquely determined (mod P ?) if b<r.

In Theorems 1-8 we give formulas for the number Q,(p) of solutions
of (1). Solvability criteria are obtained as corollaries of these theo-
rems. (We remark that if p=0 (mod Pr), then (1) has the trivial
solution (0, 0).) The formulas given in this note follow directly from
more general theorems proved for congruences (mod Pr) involving
a kth power and an arbitrary number of squares [2].

If r=1, the congruence (1) amounts to an equation in a Galois
field of order g. For discussions of general trinomial congruences in a
finite field, particular reference is made to Vandiver [7] who has
published several pertinent papers in recent years. A number of au-
thors have considered the special case of (1) with r=1 and K the
rational field; in particular we mention Frattini [3], E. Lehmer [5],
and Manin [6]. For a discussion of trinomial congruences in algebraic
number fields, see Cohen’s paper [1].

We need the following notation:

3 b=Lk+I (0=SI<k; ¢=(-a/P), 1=(—9/P),

where (8/P) denotes the Legendre symbol in D.
Let Q(n) = Qi(n) denote the number of solutions of

4 X* + a¥? = 9 (mod P), (9, P) = 1.
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Theorems 1-4 and 7-8 below contain explicit formulas for the num-
ber of solutions of (1), while Theorems 5 and 6 are reduction formulas
which give the number of solutions of (1) in terms of the number of
solutions of (4). Theorems 5 and 6 apply if d>2, p#0 (mod P7),
b=0 (mod k), and bk is even; under these conditions it is not possible
to give explicit formulas for Q,(p). Davenport and Hasse [4] have
shown that Q(n) =2¢— (d—1)+/g, a result which we utilize in Corol-
lary 7.

THEOREM 1. If kis odd and r >b#0 (mod &), then Q.(p) (g2 —1) /q"!
=(g—1)(g*/*VL+—2—1) for L even, I odd or for L even, I even,
re=—1; (q__ 1)(q(k/2—1)L+k-—2__ 1) +2(qk—-2_ 1)q(k12—1)L+I/2 for L even,
I even, 7¢=1; (g—1)(g*/#—D&+D —1) for L odd, I even, or for L odd, I
odd, t=—1; (g—1)(q®/=DIEAD 1) 42 (g2 —1)q*I2=DIHI2 for [
odd, I odd, ¢ =1.

CoROLLARY 1. If k is odd and bs£0 (mod k), then (1) is solvable.

THEOREM 2. If k=2 and r>b#0 (mod 2), then Q.(0)/q*=0 for

=—1;2(q—1)(L+1) for¢=1.If kiseven,k>2,and r >b#0 (mod k),
then Q.(p)(¢*'**—1)/q"~1=0 for I odd, ¢ = —1, or for I even, {=—1
= —7;2(q—1)(¢*/2" VI —1) for T odd, ¢ =1, 0r for I even,{=1= —1;
Zq(kl2_1)L+I/2(qkl2—1—-1) fof I even, g‘: —_— 1 =7, 2(q—-1)(q(k/2—1)(l4+1) -—1)
+2g®I-DLFLI2(gki2—1 — 1) for I even, {=1=1,

COROLLARY 2. If k is even and r >b3£0 (mod k), then (a) If I is odd,
the congruence (1) is insolvable =¢= —1.
(b) If I is even, the congruence (1) is insolvable 2= —1= —r,

THEOREM 3. If k=2 and r > b =0 (mod 2), then Q.(p)/q"*
=(q—1A+2L)for¢; =1;9q+1for{ = —1.Ifd =2 < kand
r>b=0 (mod k), then

0,(p) (g*12t — 1) /g™t = (g — 1)(g*/>~DE+D) 4 gG/2-DL _ 2)
for §=;1 (g+1)g*/*=DL(g*1—1) for {=—1.
CoRroLLARY 3. If d=2 and b=0 (mod k), then (1) is solvable.

THEOREM 4. If k is odd, b is odd and r > b = 0 (mod k), then
Q:(p)(¢*2—1) /¢t = (g— 1) (q*/>VE+D—1) for 0 not a kith power
(mod P); (g—1)(q®/*DE+) —1) g3 LH11%(gh~2 —1) for y o hth
power (mod P).

COROLLARY 4. If k is odd, b is odd, and b=0 (mod &), then (1) is
solvable.
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THEOREM 5. If k is even, d>2, and r >b=0 (mod &), then Q.(p)/q"*
=g*I*=vEQ(n) for {=—1and
Qo) (¢** — 1)/q
= g#DIE{git 4 g — 24 (Qn) — @ = D} = 2(¢ = 1)
for ¢ =1,
COROLLARY 5. If k is even, d>2, and r>b=0 (mod k), then

(@) If £=—1, Q.(p) =022Q(n) =0.
(b) If £ =1, Q:(p) =02Q(n) =0 and L=0.

THEOREM 6. If k is odd, b is even and r >b=0 (mod k), then

() (g** — 1)/q!
=1—-q+ q(k/2—1)L{qk—1 — 14+ Q@) — q)(qk—2 —_ 1)}

COROLLARY 6. If k is odd, b is even, and r>b=0 (mod k), then
Q+(p) =02Q(n) =0 and L=0.

Since Q(n) 2¢— (d—1)+/g, one obtains from Corollaries 5 and 6,

COROLLARY 7. If d>2, bk is even, and r>b=0 (mod k), then (1)
1s solvable if ¢> (d—1)2; moreover, (1) is solvable for arbitrary q if L0
and k is odd, or if L#0 and {=1.

For completeness, the following formulas in the case
b=r (p=0 (mod Pr)) are also included.

THEOREM 7. If k=2 and b=r, then Q.(p)/q" =g+ (g—1)r for { =1;
gfort=—1,reven; 1 for {=—1,ro0dd. If k is even, k>2 and b=r, then
0(o) /a1 =q=914 for 1=0, 7= —1;

{q#DE(g + g = 2) = 2 = D}/(@* = 1) for I=0,¢ =1,
g1V I for T even, I>0, § = —1; q®/2-DI+UI=DI2 for T odd, { = —1;
{g102(g124g—2) = 2(g— 1)} /(@11 = 1) +¢*1+DE(ql 12+ —2) for

I even, I>0, ¢=1; {q®1>DL(ghi24q—2)—2(q—1)}/(g*'*1—1)
4 q®12=DL(gI-DI2 g —2) for I odd, ¢ =1.

THEOREM 8. If k is odd and b=r, then
Qr(p)/gt = {q@1DE(g — 1) — g + 1}/(g* — 1)
+ q®/12=DI(gli2 — 1) for L even, I even;

{gaDE(g1—1) —g+1} /(g2 = 1) +q*/*DE(qU=11 1) for L even,
Todd; {q4/*DE(gr 1242 — M1 —gtit) — g +1} /(¢ 1) for L odd,
I=0;
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{q(klz—l)L(qk—SIZ + gkl — ghl-t — gli2) — g 1}/(qk—-2 -1)
+ q®I2-DLH2(gl12=1 — 1) for L odd, I even, I > 0;

{q(k/2—l)L(qk—3/2 + qkl2 —_ qk/2—l —_— q1/2) —q + 1}/(qk-—2 —_— 1)
+ q@/F-DIHL(gI=I2 — 1) for L odd, I odd.

We now apply the formulas to a few examples, letting K be the
rational field. X3+ ¥Y?=2-7% (mod 7¢%) has 2,058 solutions by Theo-
rem 4; X*+2Y%=25 (mod 125) has no solutions by Corollary 2;
X44Y2=3-5* (mod 5% has 5,000 solutions by Theorem 5; X¢+ ¥?
=6-7% (mod 77) has no solutions by Corollary 5.
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