THE NUMBER OF SOLUTIONS OF A TRINOMIAL CONGRUENCE INVOLVING A &TH POWER AND A SOUARE

BY J. T. CROSS

Communicated by G. B. Huff, September 28, 1962

Let K denote a finite extension of the rational number field and D the domain of algebraic integers of K. Let P be a prime ideal of D having norm $N(P) = p^h = q$, where h is a positive integer and p is an odd rational prime number. This announcement is concerned with the number of solutions of the trinomial congruence,

$$(1) X^k + \alpha Y^2 \equiv \rho \pmod{P^r},$$

where α and ρ are in D with ρ arbitrary and $(\alpha, P) = 1$, r is a positive integer, k is a positive integer such that (k, p) = 1, and d = (k, q - 1) > 1. Let C denote an ideal of D such that (P, C) = 1 and $PC = (\theta)$ is principal, and let b be the greatest integer n such that $0 \le n \le r$ and $P^n \mid \rho$. Then we may put

(2)
$$\rho \equiv \eta \theta^b \pmod{P^r}, \qquad (\eta, P) = 1,$$

where η is uniquely determined (mod P^{r-b}) if b < r.

In Theorems 1-8 we give formulas for the number $Q_r(\rho)$ of solutions of (1). Solvability criteria are obtained as corollaries of these theorems. (We remark that if $\rho \equiv 0 \pmod{P^r}$, then (1) has the trivial solution (0, 0).) The formulas given in this note follow directly from more general theorems proved for congruences (mod P^r) involving a kth power and an arbitrary number of squares [2].

If r=1, the congruence (1) amounts to an equation in a Galois field of order q. For discussions of general trinomial congruences in a finite field, particular reference is made to Vandiver [7] who has published several pertinent papers in recent years. A number of authors have considered the special case of (1) with r=1 and K the rational field; in particular we mention Frattini [3], E. Lehmer [5], and Manin [6]. For a discussion of trinomial congruences in algebraic number fields, see Cohen's paper [1].

We need the following notation:

(3)
$$b = Lk + I$$
 $(0 \le I < k);$ $\zeta = (-\alpha/P),$ $\tau = (-\eta/P),$

where (β/P) denotes the Legendre symbol in D.

Let $Q(\eta) = Q_1(\eta)$ denote the number of solutions of

(4)
$$X^k + \alpha Y^2 \equiv \eta \pmod{P}, \qquad (\eta, P) = 1.$$

Theorems 1-4 and 7-8 below contain explicit formulas for the number of solutions of (1), while Theorems 5 and 6 are reduction formulas which give the number of solutions of (1) in terms of the number of solutions of (4). Theorems 5 and 6 apply if d>2, $\rho\not\equiv 0\pmod{P^r}$, $b\equiv 0\pmod{k}$, and bk is even; under these conditions it is not possible to give explicit formulas for $Q_r(\rho)$. Davenport and Hasse [4] have shown that $Q(\eta) \ge q - (d-1)\sqrt{q}$, a result which we utilize in Corollary 7.

Theorem 1. If k is odd and $r > b \not\equiv 0 \pmod{k}$, then $Q_{\tau}(\rho)(q^{k-2}-1)/q^{r-1} = (q-1)(q^{(k/2-1)L+k-2}-1)$ for L even, I odd or for L even, I even, $\tau \zeta = -1$; $(q-1)(q^{(k/2-1)L+k-2}-1) + 2(q^{k-2}-1)q^{(k/2-1)L+I/2}$ for L even, I even, $\tau \zeta = 1$; $(q-1)(q^{(k/2-1)(L+1)}-1)$ for L odd, I even, or for L odd, I odd, $\tau \zeta = -1$; $(q-1)(q^{(k/2-1)(L+1)}-1) + 2(q^{k-2}-1)q^{(k/2-1)L+I/2}$ for L odd, I odd, $\tau \zeta = 1$.

COROLLARY 1. If k is odd and $b \not\equiv 0 \pmod{k}$, then (1) is solvable.

THEOREM 2. If k=2 and $r>b \not\equiv 0 \pmod 2$, then $Q_r(\rho)/q^{r-1}=0$ for $\zeta=-1$; 2(q-1)(L+1) for $\zeta=1$. If k is even, k>2, and $r>b\not\equiv 0 \pmod k$, then $Q_r(\rho)(q^{k/2-1}-1)/q^{r-1}=0$ for I odd, $\zeta=-1$, or for I even, $\zeta=-1=-\tau$; $2(q-1)(q^{(k/2-1)(L+1)}-1)$ for I odd, $\zeta=1$, or for I even, $\zeta=1=-\tau$; $2q^{(k/2-1)(L+1)/2}(q^{k/2-1}-1)$ for I even, $\zeta=-1=\tau$; $2(q-1)(q^{(k/2-1)(L+1)}-1)+2q^{(k/2-1)(L+1)/2}(q^{k/2-1}-1)$ for I even, $\zeta=1=\tau$.

COROLLARY 2. If k is even and $r > b \not\equiv 0 \pmod{k}$, then (a) If I is odd, the congruence (1) is insolvable $\rightleftarrows \zeta = -1$.

(b) If I is even, the congruence (1) is insolvable $\rightleftharpoons \zeta = -1 = -\tau$.

THEOREM 3. If k = 2 and $r > b \equiv 0 \pmod{2}$, then $Q_r(\rho)/q^{r-1} = (q-1)(1+2L)$ for $\zeta = 1$; q+1 for $\zeta = -1$. If d=2 < k and $r > b \equiv 0 \pmod{k}$, then

$$Q_r(\rho)(q^{k/2-1}-1)/q^{r-1}=(q-1)(q^{(k/2-1)(L+1)}+q^{(k/2-1)L}-2)$$

for $\zeta = (1 (q+1)q^{(k/2-1)L}(q^{k/2-1}-1))$ for $\zeta = -1$.

COROLLARY 3. If d=2 and $b\equiv 0 \pmod{k}$, then (1) is solvable.

THEOREM 4. If k is odd, b is odd and $r > b \equiv 0 \pmod{k}$, then $Q_r(\rho)(q^{k-2}-1)/q^{r-1} = (q-1)(q^{(k/2-1)(L+1)}-1)$ for η not a kth power \pmod{P} ; $(q-1)(q^{(k/2-1)(L+1)}-1)+dq^{(k/2-1)(L+1/2)}(q^{k-2}-1)$ for η a kth power \pmod{P} .

COROLLARY 4. If k is odd, b is odd, and $b \equiv 0 \pmod{k}$, then (1) is solvable.

1963]

THEOREM 5. If k is even, d>2, and $r>b\equiv 0 \pmod{k}$, then $Q_r(\rho)/q^{r-1}=q^{(k/2-1)L}Q(\eta)$ for $\zeta=-1$ and

$$Q_{r}(\rho)(q^{k/2-1}-1)/q^{r-1}$$

$$= q^{(k/2-1)/L} \{ q^{k/2} + q - 2 + (Q(\eta) - q) \cdot (q^{k/2-1} - 1) \} - 2(q-1)$$
for $\zeta = 1$.

COROLLARY 5. If k is even, d>2, and $r>b\equiv 0 \pmod{k}$, then

- (a) If $\zeta = -1$, $Q_r(\rho) = 0 \rightleftharpoons Q(\eta) = 0$.
- (b) If $\zeta = 1$, $Q_r(\rho) = 0 \rightleftharpoons Q(\eta) = 0$ and L = 0.

THEOREM 6. If k is odd, b is even and $r>b\equiv 0 \pmod{k}$, then

$$Q_r(\rho)(q^{k-2}-1)/q^{r-1}$$

$$= 1 - q + q^{(k/2-1)L} \{ q^{k-1} - 1 + (Q(\eta) - q)(q^{k-2} - 1) \}.$$

COROLLARY 6. If k is odd, b is even, and $r>b\equiv 0\pmod k$, then $Q_r(\rho)=0 \rightleftharpoons Q(\eta)=0$ and L=0.

Since $Q(\eta) \ge q - (d-1)\sqrt{q}$, one obtains from Corollaries 5 and 6,

COROLLARY 7. If d > 2, bk is even, and $r > b \equiv 0 \pmod{k}$, then (1) is solvable if $q > (d-1)^2$; moreover, (1) is solvable for arbitrary q if $L \neq 0$ and k is odd, or if $L \neq 0$ and $\zeta = 1$.

For completeness, the following formulas in the case b=r ($\rho\equiv 0\pmod{P^r}$) are also included.

THEOREM 7. If k = 2 and b = r, then $Q_r(\rho)/q^{r-1} = q + (q-1)r$ for $\zeta = 1$; q for $\zeta = -1$, r even; 1 for $\zeta = -1$, r odd. If k is even, k > 2 and b = r, then $Q_r(\rho)/q^{r-1} = q^{(k/2-1)L+1}$ for I = 0, $\zeta = -1$;

THEOREM 8. If k is odd and b=r, then

$$Q_r(\rho)/q^{r-1} = \left\{q^{(k/2-1)L}(q^{k-1}-1)-q+1\right\}/(q^{k-2}-1) + q^{(k/2-1)L}(q^{l/2}-1) \text{ for } L \text{ even, } I \text{ even;}$$

 $\left\{ q^{(k/2-1)\,L}(q^{k-1}-1) - q + 1 \right\} / (q^{k-2}-1) + q^{(k/2-1)\,L}(q^{(I-1)/2}-1) \ \text{for L even,} \\ I \ odd; \left\{ q^{(k/2-1)\,L}(q^{k-3/2} + q^{k/2} - q^{k/2-1} - q^{1/2}) - q + 1 \right\} / (q^{k-2}-1) \ \text{for L odd,} \\ I = 0;$

86 J. T. CROSS

$$\begin{aligned} \big\{ q^{(k/2-1)L}(q^{k-8/2} + q^{k/2} - q^{k/2-1} - q^{1/2}) - q + 1 \big\} / (q^{k-2} - 1) \\ &+ q^{(k/2-1)L+1/2}(q^{I/2-1} - 1) \text{ for } L \text{ odd, } I \text{ even, } I > 0; \\ \big\{ q^{(k/2-1)L}(q^{k-3/2} + q^{k/2} - q^{k/2-1} - q^{1/2}) - q + 1 \big\} / (q^{k-2} - 1) \\ &+ q^{(k/2-1)L+1/2}(q^{(I-1)/2} - 1) \text{ for } L \text{ odd, } I \text{ odd.} \end{aligned}$$

We now apply the formulas to a few examples, letting K be the rational field. $X^3 + Y^2 \equiv 2 \cdot 7^3 \pmod{7^4}$ has 2,058 solutions by Theorem 4; $X^4 + 2Y^2 \equiv 25 \pmod{125}$ has no solutions by Corollary 2; $X^4 + Y^2 \equiv 3 \cdot 5^4 \pmod{5^5}$ has 5,000 solutions by Theorem 5; $X^6 + Y^2 \equiv 6 \cdot 7^6 \pmod{7^7}$ has no solutions by Corollary 5.

BIBLIOGRAPHY

- 1. Eckford Cohen, Binary congruences in algebraic number fields, Proc. Nat. Acad. Sci. 42 (1956), 120-122.
- 2. J. T. Cross, The number of solutions of certain types of congruences in algebraic number fields, (to appear).
- 3. G. Frattini, *Intorno ad un teorema di Lagrange*, Atti Reale Accad. Lincei Rend. 1 (1885), 136-142.
- 4. H. Davenport and H. Hasse, Die Nullstellen der Kongruenz-zetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
- 5. Emma Lehmer, On the number of solutions of $u^k + D = w^2 \pmod{p}$, Pacific J. Math. 5 (1955), 103-118.
- 6. Yu. I. Manin, On cubic congruences to a prime modulus, Amer. Math. Soc. Transl. (2) 13 (1960), 1-7.
- 7. H. S. Vandiver, On the number of solutions of certain non-homogeneous trinomial equations in a finite field, Proc. Nat. Acad. Sci. 31 (1945), 170-175.

THE UNIVERSITY OF TENNESSEE AND
THE UNIVERSITY OF THE SOUTH