ON LEFT AMENABLE SEMIGROUPS WHICH ADMIT COUNTABLE LEFT INVARIANT MEANS

BY E. GRANIRER

Communicated by M. M. Day, July 12, 1962

Introduction. This work is closely connected with [5] and we shall freely use the notations of $[5, \S 2]$.

Let G be a semigroup which admits countable left invariant means (i.e., $Ml(G) \cap Ql_1(G) \neq \emptyset$, where Ml(G) is the set of left invariant means) and let $\mathfrak{sl}(G) = \{\phi; \phi \in m(G)^*, L_g\phi = \phi \text{ for } g \in G\}$. By Theorem 4.2 of [5] G contains finite groups which are left ideals with left cancellation, i.e. by [5, §2] (l.i.l.c.).¹ Let $\{A_\alpha\}_{\alpha\in I}$ be the set of all finite groups which are (l.i.l.c.) in G and define for $\alpha, \beta \in I, \alpha \cdot \beta = \beta$. The indices set I becomes thus a semigroup with semigroup algegra $l_1(I)$ and second conjugate algebra $m(I)^*$ (as defined in Day [3, p. 526]). As proved in Theorem 1 of M. M. Day [3, p. 530] $\mathfrak{sl}(G)$ is also a subalgebra of $m(G)^*$ (when regarded as the second conjugate algebra of $l_1(G)$).

A linear positive isometry from $m(I)^*$ onto $\mathfrak{sl}(G)$ which displays the inner structure of $\mathfrak{sl}(G)$ is constructed in this paper. This isometry is also an algebraic isomorphism from the algebra $m(I)^*$ onto the algebra $\mathfrak{sl}(G)$.

 $A = \bigcup_{\alpha \in I} A_{\alpha}$ is a right minimal ideal (this is the result of Clifford [1,] for proof see [5, Lemma 3.1 and Remark 3.1]) and moreover, the A_{α} 's as finite groups are isomorphic to one another (see [6] end of proof of Theorem E) therefore the number N of elements of A_{α} does not depend on α . We now define the linear operator $T: m(G) \rightarrow m(I)$:

for
$$\alpha \in I$$
 $(Tf)(\alpha) = \frac{1}{N} \sum_{g \in A_{\alpha}} f(g).$

This operator has the following properties:

(1) If $f(g) \ge 0$ for each g in G then $(Tf)(\alpha) \ge 0$ for each $\alpha \in I$ (obvious).

(2) $T1_G = 1_I$ (obvious).

(3) $T(l_a f) = T(f)$ for each a in G and f in m(G):

$$(Tl_a f)(\alpha) = \frac{1}{N} \sum_{g \in A_{\alpha}} (l_a f)(g) = \frac{1}{N} \sum_{g \in A_{\alpha}} f(ag) = \frac{1}{N} \sum_{g \in A_{\alpha}} f(g) = (Tf)(\alpha)$$

 $(aA_{\alpha} = A_{\alpha} \text{ since } A_{\alpha} \text{ is a finite (l.i.l.c.)})$

¹ A finite group $B \subseteq G$ is a (l.i.l.c.) if gB = B for each g in G.

E. GRANIRER

(4) T is linear and $||Tf|| \leq ||f||$ for f in m(G). Linearity is evident and

$$\begin{aligned} \|Tf\| &= \sup_{\alpha \in I} \left| (Tf)(\alpha) \right| &= \sup_{\alpha \in I} \frac{1}{N} \left| \sum_{g \in A_{\alpha}} f(g) \right| \leq \sup_{\alpha \in I} \frac{1}{N} \sum_{g \in A_{\alpha}} |f(g)| \\ &\leq \frac{1}{N} \sum_{g \in A_{\alpha}} \|f\| = \|f\|. \end{aligned}$$

(5) T[m(G)] = m(I) since if h is in m(I) then we define f in m(G) as follows: for $g \in A_{\alpha}$ let $f(g) = h(\alpha)$ and this for each $\alpha \in I$, for g not in $A = \bigcup_{\alpha \in I} A_{\alpha}$ (if there exist at all such g's) let f(g) = 0. Obviously f is in m(G) and:

$$(Tf)(\alpha) = \frac{1}{N} \sum_{g \in A_{\alpha}} f(g) = \frac{1}{N} \sum_{g \in A_{\alpha}} h(\alpha) = h(\alpha).$$

Thus Tf = h, but moreover the above chosen f satisfies also $||f|| \leq ||h||$. Thus the image of the closed unit ball in m(G) by T, is the whole closed unit ball of m(I).

(6) If $B \subset G$ is a finite set then $(T1_B)(\alpha)$ does not vanish at most on a finite subset of *I*. In fact $(T1_B)(\alpha) = (1/N) \sum_{g \in A_{\alpha}} 1_B(g)$, thus $T(1_B)$ does not vanish only for those α which satisfy $B \cap A_{\alpha} \neq \emptyset$. Since *B* is finite there is at most a finite number of such α .

If S is a set then let $c_0(S)^{\perp} \subset m(S)^*$ be defined by

$$c_0(S) \perp = \{\phi; \phi(1_g) = 0 \text{ for each } g \text{ in } S\}$$

We are now ready to prove the following:

THEOREM. $T^*: m(I)^* \to m(G)^*$ is a linear positive isometry from $m(I)^*$ onto $\mathfrak{sl}(G)$ such that $T^*[Ql_1(I)] = Ql_1(G) \cap \mathfrak{sl}(G)$ and

$$T^*[c_0(I)^{\perp}] = c_0(G)^{\perp} \cap \mathfrak{sl}(G).$$

PROOF. $(T^*\phi)f = \phi(Tf)$ for ϕ in $m(I)^*$ and f in m(G). T^* is linear and moreover is isometric since:

$$\| T^* \phi \| = \sup_{f \in m(\mathcal{G}), \|f\| \le 1} | (T^* \phi)(f) | = \sup_{f \in m(\mathcal{G}), \|f\| \le 1} | \phi(Tf) |$$

= (*) $\sup_{h \in m(I), \|h\| \le 1} | \phi(h) | = \| \phi \|$

(for (*) see (5) above). Now for ϕ in $m(I)^*$, f in m(G) and a in G

$$(T^*\phi)(l_a f) = \phi(T l_a f) = \phi(T f) = (T^*\phi)(f)$$

(see (3) above) which implies that $T^*(m(I)^*) \subset \mathfrak{sl}(G)$. We prove now that $T^*(m(I)^*) = \mathfrak{sl}(G)$. In order to do this we have to prove at first

[January

102

that if ϕ is in $\mathfrak{sl}(G)$ and f in m(G) is such that Tf=0 (i.e., $Tf(\alpha) = (1/N) \sum_{g \in A_{\alpha}} f(g) = 0$ for each $\alpha \in I$) then $\phi(f) = 0$. In fact if G - A will denote those elements of G which are not in $A = \bigcup_{\alpha \in I} A_{\alpha}$ (this may be an empty set) and if a is some element of A, then for any f' of m(G) and g of G we have

$$(l_a(f'1_{G-A}))(g) = (f'1_{G-A})(ag) = f'(ag)1_{G-A}(ag) = 0$$

since ag belongs to A for any g of G (see remark (3.1) of [5]). Thus:

$$\phi(f') = \phi(f'1_A) + \phi(f'1_{G-A}) = \phi(f'1_A) + \phi(l_a(f'1_{G-A})) = \phi(f'1_A).$$

Let us pick some α_0 of I and let a_1, \dots, a_N be the N elements of A_{α_0} . If a is an arbitrary but fixed element of A then $a \in A_{\alpha}$ for some $\alpha \in I$. But $A_{\alpha_0} \cdot a$ is a left ideal and $A_{\alpha_0} \cdot a \subset A_{\alpha}$. Since A_{α} is a minimal left ideal (as a left ideal and group) $A_{\alpha_0} \cdot a = A_{\alpha}$. Now

$$\left[\frac{1}{N}\sum_{i=1}^{N}l_{a_{i}}f\right](a) = \frac{1}{N}\sum_{i=1}^{N}f(a_{i}a) = \frac{1}{N}\sum_{g\in A_{\alpha}}f(g) = (Tf)(\alpha).$$

But by assumption $(Tf)(\alpha) = 0$ for each $\alpha \in I$, which implies that

$$\left[\frac{1}{N}\sum_{i=1}^{N}l_{a,i}f\right](g) = 0 \quad \text{for each } g \text{ of } A.$$

But since ϕ is left invariant

$$\phi(f) = \phi \left[\frac{1}{N} \sum_{i=1}^{N} l_{a_i} f \right] = \phi \left[\left(\frac{1}{N} \sum_{i=1}^{N} l_{a_i} f \right) \mathbf{1}_A \right] = \phi(0) = 0$$

which proves that if Tf = 0 for some f of m(G) then $\phi(f) = 0$ for each ϕ of $\mathfrak{sl}(G)$.

Let now ϕ_0 be an arbitrary but fixed element of $\mathfrak{sl}(G)$. We define ψ_0 of $m(I)^*$ such that $T^*\psi_0 = \phi_0$ as follows: if h is in m(I) then let $f \in m(G)$ be such that Tf = h (by (5) above there exists such an f). We define $\psi_0(h) = \phi_0(f)$. ψ_0 is well defined on m(I), since if f_1 is such that $Tf_1 = h = Tf$ then $T(f_1 - f) = 0$ and thus $\phi_0(f_1 - f) = 0$. We get that $\phi_0(f_1) = \phi_0(f) = \psi_0(h)$.

 ψ_0 is linear since if $h_i = Tf_i$, i = 1, 2, then $T(\alpha f_1 + \beta f_2) = \alpha Tf_1 + \beta Tf_2$ and $\psi_0(\alpha h_1 + \beta h_2) = \phi_0(\alpha f_1 + \beta f_2) = \alpha \phi_0(f_1) + \beta \phi_0(f_2) = \alpha \psi_0(h_1) + \beta \psi_0(h_2)$.

If *h* is in m(I) then we can choose by (5) above a *f* in m(G) such that $||f|| \leq ||h||$ and Tf = h. Thus $|\psi_0(h)| = |\phi_0(f)| \leq ||\phi_0|| ||f|| \leq ||\phi_0|| ||h||$ which implies that ψ_0 is in $m(I)^*$. But for *f* in m(G) let h = Tf, then $(T^*\psi_0)(f) = \psi_0(Tf) = \psi_0(h) = \phi_0(f)$ which proves that $T^*\psi_0 = \phi_0$, in other words that T^* is a linear isometry from $m(I)^*$ onto $\mathfrak{sl}(G)$.

If now $\psi \in m(I)^*$ is non-negative (i.e., $\psi(h) \ge 0$ for $h \ge 0$) and if

1963]

 $f \in m(G)$ is non-negative then by (1) above Tf is non-negative and $(T^*\psi)(f) = \psi(Tf) \ge 0$ which proves that T^* is positive.

If $\psi \in c_0(I)^{\perp}$ (i.e., $\psi(\mathbf{1}_{\alpha}) = 0$ for each $\alpha \in I$) and if $B \subset G$ is a finite set then $(T^*\psi)(\mathbf{1}_B) = \psi(T\mathbf{1}_B) = 0$, since by (6) above $T(\mathbf{1}_B)$ does not vanish at most on a finite set. Thus $T^*\psi$ is in $c_0(G)^{\perp}$ and $T^*(c_0(I)^{\perp}) \subset c_0(G)^{\perp}$ $\cap \mathfrak{sl}(G)$.

If now, ψ is in $Ql_1(I)(||\psi|| = \sum_{\alpha \in I} |\psi(1_\alpha)| < \infty)$ then we define ϕ in $Ql_1(G)$ as follows:

 $\phi(1_g) = \psi(1_\alpha)$ for $g \in A_\alpha$, $\alpha \in I$ and $\phi(1_g) = 0$ for $g \in G - A$ (if nonvoid). $\psi(1_\alpha) \neq 0$ at most on a countable subset of *I*, therefore $\phi(1_g) \neq 0$ at most on a countable subset of *G* and

$$\sum_{g\in G} |\phi(1_g)| = \sum_{\alpha\in I} \sum_{g\in A_\alpha} |\phi(1_g)| = \sum_{\alpha\in I} N |\psi(1_\alpha)| = N ||\psi|| < \infty.$$

Moreover,

$$(T^*\psi)(f) = \psi(Tf) = \sum_{\alpha \in I} \psi(1_{\alpha})(Tf)(\alpha) = \sum_{\alpha \in I} \psi(1_{\alpha}) \frac{1}{N} \sum_{g \in A_{\alpha}} f(g)$$
$$= \sum_{\alpha \in G} \frac{1}{N} \phi(1_g) f(g)$$

which implies that $T^*\psi = (1/N)\phi$ and $\phi \in Ql_1(G)$. Thus $T^*(Ql_1(I)) \subset Ql_1(G) \cap \mathfrak{sl}(G)$.

If $\phi \in c_0(G)^{\perp} \cap \mathfrak{sl}(G)$ then there is some $\psi \in \mathfrak{m}(I)^*$ such that $T^*\psi = \phi$. However as well known, $c_0(I)^{\perp} \oplus Ql_1(I) = \mathfrak{m}(I)^*$ (see [7, p. 429]), which implies that ψ can be decomposed into $\psi = \psi_1 + \psi_2$ with $\psi_1 \in Ql_1(I)$ and $\psi_2 \in c_0(I)^{\perp}$. Thus $T^*\psi = T^*\psi_1 + T^*\psi_2 = \phi$. But from above, $T^*\psi_2 \in c_0(G)^{\perp}$ and by assumption $\phi \in c_0(G)^{\perp}$, which implies that $T^*\psi_1 \in c_0(G)^{\perp} \cap Ql_1(G) = \{0\}$.

We have shown that $T^*(c_0(I)^{\perp}) = c_0(G)^{\perp} \cap \mathfrak{sl}(G)$. In the same way one gets that $T^*(Ql_1(I)) = Ql_1(G) \cap \mathfrak{sl}(G)$ which finishes the proof of the theorem.

REMARKS. If $\phi_1, \phi_2 \in m(I)^*$ and $x \in m(I)$ then $(\phi_1 \odot \phi_2)(x) = \phi_1(\phi_2 l'_{\alpha} x)$ where l'_{α} is the left translation operator in m(I) with respect to the element $\alpha \in I$. (See M. M. Day [3, p. 527].) Since $(l'_{\alpha} x)(\beta) = x(\alpha\beta)$ $= x(\beta)$ one gets that $(\phi_1 \odot \phi_2)(x) = \phi_1(\phi_2(x)\mathbf{1}_I) = \phi_1(\mathbf{1}_I) \cdot \phi_2(x)$ and thus $\phi_1 \odot \phi_2 = \phi_1(\mathbf{1}_I)\phi_2$, which implies that $T^*(\phi_1 \odot \phi_2) = \phi_1(\mathbf{1}_I)T^*\phi_2$. (Until now \odot denoted multiplication in $m(I)^*$. From now on its denotes multiplication in $m(G)^*$.) But $(T^*\phi_1) \odot (T^*\phi_2) = ((T^*\phi_1)(\mathbf{1}_G))T^*\phi_2$ (see Day [3, p. 530]). Since $(T^*\phi_1)(\mathbf{1}_G) = \phi_1(T\mathbf{1}_G) = \phi_1(\mathbf{1}_I)$ one gets that $T^*(\phi_1 \odot \phi_2) = (T^*\phi_1) \odot (T^*\phi_2)$ which implies the

COROLLARY. T^* is an algebraic isomorphism from $m(I)^*$ onto $\mathfrak{gl}(G)$.

104

REMARKS. If $\phi \in \mathfrak{gl}(G)$ then let $\psi = (T^*)^{-1}(\phi)$. By Jordan's decomposition theorem $\psi = \psi_1 - \psi_2$ with non-negative ψ_1, ψ_2 of $m(I)^*$ (see [4, p. 98]). Thus $\phi = T^*\psi = T^*\psi_1 - T^*\psi_2$ where $T^*\psi_i i = 1, 2$ are nonnegative disjoint left invariant elements in $m(G)^*$. If $\alpha_i = (T^*\psi_i)$ (1_G) ≥ 0 then it is easily seen that ϕ can be written as $\phi = \alpha_1\phi_1 - \alpha_2\phi_2$ where ϕ_1, ϕ_2 are either left invariant means or zero. ($\phi_i = (1/\alpha_i)T^*\psi_i$ if $\alpha_i > 0$ and $\phi_i = 0$ if $\alpha_i = 0$.) For semigroups with cancellation, this is a result of M. M. Day [2, p. 281].

References

1. A. H. Clifford, Semigroups containing minimal left ideals, Amer. J. Math. 70 (1948), 521-526.

2. M. M. Day, Means for the bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291.

3. ____, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.

4. N. Dunford and J. Schwartz, Linear operators. I, Interscience, N. Y., 1958.

5. E. Granirer, On amenable semigroups with a finite dimensional set of invariant means. I, Illinois J. Math. (to appear).

6. ———, On amenable semigroups with a finite dimensional set of invariant means. II, Illinois J. Math. (to appear).

7. G. Köthe, Topologische lineare Räume, Springer, Berlin, 1960.

THE HEBREW UNIVERSITY OF JERUSALEM

1963]