POSITIVE SOLUTIONS OF THE HEAT EQUATION ${ }^{1}$

BY D. V. WIDDER
Communicated by A. M. Gleason, August 9, 1962

It is the purpose of this note to set forth several new integral representations of solutions of the heat equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \tag{1}
\end{equation*}
$$

which are positive for all x and for all negative or for all positive t. These results are consequences of the author's study of the Appell transformation:

$$
\begin{equation*}
v(x, t)=k(x, t) u(x / t,-1 / t) \tag{2}
\end{equation*}
$$

Here $k(x, t)$ is the fundamental solution of (1),

$$
k(x, t)=(4 \pi t)^{-1 / 2} e^{-x^{2} / 4 t} .
$$

The transformation is known to carry a solution u of (1) into another v, and it serves in a remarkable way to set up a duality between various classes of solutions. Proofs of the following results will appear in the Transactions of the American Mathematical Society.

Theorem 1. A necessary and sufficient condition that a function $u(x, t)$ should have the integral representation

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} e^{x y+t y^{2}} d \alpha(y) \tag{3}
\end{equation*}
$$

for $-\infty<t<0$, with $\alpha(y)$ nondecreasing, is that $u(x, t)$ should satisfy (1) and be non-negative there.

An example of such a function is $e^{t} \cosh x$, with $\alpha(y)$ a step-function. This representation may be used to give an immediate proof of a theorem of I. I. Hirschman [1] concerning solutions of (1) for $t<0$ which turn out to be constant as a result of restricted growth properties, $x \rightarrow \pm \infty, t=t_{0}$.

Theorem 2. A necessary and sufficient condition that a function $u(x, t)$ should have the representation

[^0]$$
u(x, t)=\int_{-\infty}^{\infty} k(y+i x,-t) \phi(y) d y
$$
for $-\infty<t<0$, with $\phi(y)$ positive definite, is that $u(x, t)$ should satisfy (1) and be non-negative there and in addition that
$$
\int_{-\infty}^{\infty} u\left(x, t_{0}\right) e^{x^{2} / 4 t_{0}} d x<\infty
$$
for some $t_{0}<0$.
An example of such a function is $k(i x, 1-t)$ with $\phi(y)$ equal to the positive definite function $(4 \pi)^{-1 / 2} e^{-y^{2} / 4}$.

Theorem 3. A necessary and sufficient condition that a function $u(x, t)$ should have the representation

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} e^{i x y-t y^{2}} \phi(y) d y \tag{4}
\end{equation*}
$$

for $0<t<\infty$, with $\phi(y)$ positive definite, is that $u(x, t)$ should satisfy (1) and be non-negative there and in addition that

$$
\begin{equation*}
\int_{-\infty}^{\infty} u\left(x, t_{0}\right) d x<\infty \tag{5}
\end{equation*}
$$

for some $t_{0}>0$.
An example here is $k(x, t)$ with $\phi(y)$ equal to the constant $(2 \pi)^{-1}$. A positive solution of (1) which fails to have the representation (4) is $x^{2}+2 t$. It does not satisfy (5) for any $t_{0}>0$.

Reference

1. I. I. Hirschman, A note on the heat equation, Duke Math. J. 19 (1952), 487-492.

Harvard University

[^0]: ${ }^{1}$ This research was supported by the Air Force Office of Scientific Research, under Contract AF-AFOSR-62-198.

