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It is the purpose of this note to set forth several new integral 
representations of solutions of the heat equation 

d2u du 
(1) = — 

dx2 Ôt 
which are positive for all x and for all negative or for all positive t. 
These results are consequences of the author's study of the Appell 
transformation : 

(2) v(x, t) = k(x, t)u(x/t, -l/t). 

Here k(x, t) is the fundamental solution of (1), 

k(x, t) = (47r0~1/2^2/4 f . 

The transformation is known to carry a solution u of (1) into another 
v, and it serves in a remarkable way to set up a duality between vari
ous classes of solutions. Proofs of the following results will appear 
in the Transactions of the American Mathematical Society. 

THEOREM 1. A necessary and sufficient condition that a function 
u(x, t) should have the integral representation 

ƒ 00 

e*v+tv2da(y) 
- 0 0 

for — oo < / < 0 , with a(y) nondecreasing, is that u(x, t) should satisfy 
(1) and be non-negative there. 

An example of such a function is e* cosh x, with a(y) a step-function. 
This representation may be used to give an immediate proof of a 
theorem of I. I. Hirschman [ l ] concerning solutions of (1) for £<0 
which turn out to be constant as a result of restricted growth prop
erties, x -*±°o , t = to. 

THEOREM 2. A necessary and sufficient condition that a function 
u(x, t) should have the representation 
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ƒ 00 

k(y + ix, —t)4>(y)dy 

for — co < J < 0 , with <j>{y) positive definite, is that u(x} t) should satisfy 
(1) and be non-negative there and in addition that 

i: u(x, to)ex2fétodx < oo 

for some to<0. 

An example of such a function is k(ix, i—t) with $(3/) equal to the 
positive definite function (47r)~1/V~2'2/4. 

THEOREM 3. A necessary and sufficient condition that a function 
u(x, t) should have the representation 

ƒ 00 

e**-*%4>(y)dy 
- 0 0 

for 0 <t < 00, with <t>(y) positive definite, is that u(xf t) should satisfy (1) 
and be non-negative there and in addition that 

ƒ 00 

u(x} to)dx 
- 0 0 

< 00 

for some t0>0. 

An example here is k(xy t) with <j>(y) equal to the constant (2TT)*"1. 

A positive solution of (1) which fails to have the representation (4) is 
x2+2t. I t does not satisfy (5) for any Jo>0. 
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