A POLYNOMIAL ANALOG OF THE GOLDBACH CONJECTURE¹

BY DAVID HAYES

Communicated by G. B. Huff, September 28, 1962

We call a polynomial $c_0x^m + c_1x^{m-1} + \cdots + c_m$ in the ring GF[q, x]primary if $c_0 = 1$. Suppose H is a polynomial in GF[q, x] and let $h = \deg H$. Then the following theorem is easily established:

THEOREM 1. If q is sufficiently large relative to h, then H is the sum of two irreducible polynomials, each of degree h+1.

PROOF. The primary irreducibles of degree h+1 fall into $\phi(H)$ residue classes mod H. The number of such irreducibles is

$$\frac{q^{h+1}}{h+1} + O\left(\frac{q^{(h+1)/2}}{h+1}\right)$$

and the number of residue classes is $\phi(H) < q^h$. Therefore, if q is sufficiently large relative to h, some one residue class contains two irreducibles P and Q. For any such pair of irreducibles P and Q, there is an element α of GF(q) so that $\alpha P + (-\alpha)Q = H$. This is the assertion of the theorem.

Our aim in this note is to sketch a proof of an asymptotic formula $(q \rightarrow \infty)$ for the number of representations of the polynomial H as a sum of two irreducibles, each of degree h+1. More specifically,

THEOREM 2. Let N(H) denote the number of pairs P, Q of primary irreducibles in GF [q, x] such that

- (1) deg $P = \deg Q = h+1$,
- (2) $P \neq Q$,
- (3) $P-Q\equiv 0 \pmod{H}$.

Then we have the asymptotic formula

(1)
$$N(H) = \frac{q^{2(h+1)}}{(h+1)^2 \phi(H)} + O(q^{h+1}) \quad as \quad q \to \infty.$$

OUTLINE OF PROOF. Let $\pi(r; H, K)$ denote the number of primary irreducibles P of degree r such that $P \equiv K \pmod{H}$. Then we have

(2)
$$N(H) = \sum_{K} [\pi(h+1; H, K)]^2 - \psi(h+1),$$

where K runs through a reduced residue system mod H, and $\psi(r)$ is

¹ Supported in part by NSF grant G-16485.

DAVID HAYES

the number of primary irreducibles in GF[q, x] of degree r.

Let $\pi_{K}(r, d)$ denote the number of primary irreducibles P in GF[q, x] such that

(1) deg P = r/d, (2) $P^d \equiv K \pmod{H}$ and let $D(r, K) = \sum_{d|r} (1/d)\pi_K(r, d)$. Note that $\pi_K(r, 1) = \pi(r; H, K)$. If r < 2h, we have $\pi_K(r, d) \leq d$ for d > 1. Thus, we find that

$$(3) D(r, K) - \pi(r; K, H) \leq r,$$

for r < 2h.

According to a formula of Artin [1], we have

(4)
$$\boldsymbol{r}\phi(H)D(\boldsymbol{r},K) = q^{\boldsymbol{r}} - \sum_{\chi} \bar{\chi}(K) \sum_{i=1}^{m(\chi)} \beta_i^{\boldsymbol{r}}(\chi)$$

where χ runs through all characters mod H and $m(\chi) \leq h$. The numbers $\beta_i(\chi)$ for $1 \leq i \leq m(\chi)$ are closely associated with the zeroes of the *L*-function $L(s, \chi)$. The association is such that it follows from the Riemann hypothesis for algebraic function fields [2] that

$$(5) \qquad |\beta_i(\chi)| \leq hq^{1/2}$$

for all χ and $1 \leq i \leq m(\chi)$.

Using (3) and (4), we can show that

(6)
$$N(H) = \sum_{K} [D(h+1, K)]^2 - \psi(h+1) + O(q^{h+1}).$$

This last formula does not require (5). Also, after some manipulation, we derive from (4) and (5) the formula

(7)
$$\sum_{K} [D(h+1,K)]^2 = \frac{q^{2(h+1)}}{(h+1)^2 \phi(H)} + O(q^{h+1}).$$

Combining (6) and (7) and making use of the trivial estimate $\psi(r) = O(q^r)$, we arrive at (1). This completes the proof.

References

1. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. II, Math. Z. 19 (1924), 242-246.

2. A. Weil. Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind. No. 1041, Hermann, Paris, 1945, Deuxième Partie, §V.

DUKE UNIVERSITY

116