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fies (F) with {{Au -Bi), • • • , {Ah, Bk)} as a class of order-pairs. The 
2fe + l integers fe2, • • • , k2+2k are reversed by p, but two of them 
must fall in the same set Ai. This is a contradiction. 

Therefore G is a proper subgroup of S*. 
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1. DEFINITION 1. A Bernoulli scheme (E, 0, SF, P , T) is a probabil
ity space together with a transformation T, where 

(i) E = {1, • • • , n} for some positive integer n, or E = {1, 2, • • • } , 
(ii) 0 = {co=( • • • , co_i, coo, ctfi, • • • )\cûiÇzE for all i), 
(iii) ff is the smallest <r-algebra containing all sets ^4*= {co|co4=fc}, 
(iv) g*>0 is defined for kÇ-E with 2*ejy <z* = l, P is the product 

measure on 5 defined by P{^4j} = g> for all i, 
(v) P is the shift transformation defined on Q, i.e., Pco = co' if 

and only if œ! =cot-+i for all i. 
We shall sometimes refer to a Bernoulli scheme as a (gi, • • • , & » ) -

scheme or a (gi, #2, • • • )-scheme depending upon whether 
£ = { l , • • • , » } or £ = { 1 , 2 , • • • }. 

DEFINITION 2. Two Bernoulli schemes (£, £2, SF, P , P) and 
(£ ' , Q', 9r', P ' , P') are said to be isomorphic modulo sets of measure 
zero (or simply isomorphic) if there exist sets D G ^ , D ' G ^ ' and a map
ping 0 : D—>D' such that 

(i) rP = A 
(ii) 0 : D—*Df is one-to-one and onto, 
(iii) <t>{To>) = P'(<M for all coGA 
(iv) if i4 C-D then A Gff if and only if <M Gff', 
(v) if A CD and ^G3F then P{A) = P'(<M), 
(vi) P(P>) = 1. 
DEFINITION 3. The entropy of a (gi, • • • , gn)-scheme [{qu #2, • • • )-

scheme] is given by 
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For a detailed discussion of entropy see, e.g., Halmos [ l ] . I t is 
well known that entropy is an invariant with respect to isomorphism, 
i.e., any two isomorphic Bernoulli schemes have the same entropy. 
I t is not known whether entropy is a complete invariant, that is, 
whether two Bernoulli schemes with the same entropy are isomorphic. 

In this note we state a theorem which gives conditions under which 
two Bernoulli schemes are isomorphic. This generalizes results due to 
Meshalkin [2]. Below is a sketch of Meshalkin's work. 

2. Consider a (qu • • • , gn)-scheme and a {pi, • • • , £m)-scheme. 
Let p be a positive integer, let ki, • • • , km be non-negative integers, 
and let M = ]T}a kapa* Meshalkin calls the (pu • • • , pm) -scheme a 
(p, M)-factor scheme of the (qu • • • , gn)-scheme provided there exist 
disjoint subsets I i , • • * , Im of {l , • • • , n} such that 

(i) i&Ia, jGIa implies g< = ffy, a = l, • • • » tn, 
(ii) pa- ]C»eia Qi^p^qj for j&I«t a = 1, • • • , m. 

THEOREM (MESHALKIN) . Consider a (qu • • • , qn)-scheme with en
tropy h. Then 

(i) any of its (p, M)-factor schemes has entropy h — M log p, 
(ii) f or fixed p and M any two (p, M)-factor schemes are isomorphic. 

COROLLARY. A (qu • • • , q^-scheme and a (pu • • • , pm)-scheme are 
isomorphic provided 

(i) they have equal entropy, and 
(ii) there exist a positive integer p and non-negative integers ku • • *, kn, 

ru ' * • » 7 m such that for all i and j with ISiSn^l^j^m the equations 
q% = p~ki and pj = p~r> hold. 

3. DEFINITION 4. Let (Q, 3F) be a measurable space. A maximal 
partition of (fl, &) is a partition of Î2 into measurable disjoint sets 
such that every measurable subset of 0 is the union of sets in the 
partition. 

DEFINITION 5. Let E be as above and let 2 be the o*-algebra of all 
subsets of E. Let P be a probability measure defined on 2 which 
assigns positive probability to each nonempty subset of E. Let 
S o C S i C S be (r-algebras, let 11= (pu pii • • * ) be a finite or infinite 
sequence of positive numbers with 2£,-«=l, and let 0 < a ; g l . Si is a 
simple decomposition o / S 0 of weight a with respect to II if there exist 
Au A%, • • • ; Bu B^ • • • ; Cu C2, • • • all subsets of E such that 

(i) U<5*=U<C< = B a n d P ( J B ) = a , 
(ii) {Au A 2 I • • • ; Bu P2, • • • } is a maximal partition of (£,2o), 
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(iii) {Au A2i • • • ; Bid, BiC2, • • • ; i^Ci, B2C2, • • • ; • • • } is a 
maximal partition of (E, Si), 

(iv) P{£iCV}/P(J3i) = £y for all i and j . 
We shall refer to B as the base of the decomposition, and to d as 

the ith compartment of the decomposition. 
DEFINITION 6. Si is a decomposition of S0 of weight a with respect to 

II if there exists a finite or infinite sequence of triples {(2*, B\ ($l) }, 
i = 1, 2, • • • , with 2* a (7-algebra of subsets of E, Bl a subset of Ê, 
and j8* a positive number for each i such that 

(i) 2* is a simple decomposition of 2 i _ 1 of weight j8* and base Bl 

with respect to II (2° = So), 
(ii) i5*Ci5*- 1 for t^2> 

(iü) £*/3'= «<«>, 
(iv) 2i is the smallest o*-algebra containing each 2 \ 
Let D be a finite or denumerably infinite well ordered set (ordered 

by <K) with initial element i\. 
DEFINITION 7. 2 is a [D, {n*, ai} ] decomposition of 2 0 if for each 

iÇzD there exist sub-or-algebras Qi and (B» of 2 such that 
(i) &i is a decomposition of (B* of weight on with respect to IIt-, 
(ii) (&i is the smallest cr-algebra containing each C5ty and j<&i, 
(iii) 2 is the smallest cr-algebra containing each Q,i, 
(iv) So = j8*lf 

(v) each e(EE is in only a finite number of compartments of simple 
decompositions. 

Now let (E, Q, IF, P , P) and (E', 0 ; , ^', P ' , V) be Bernoulli schemes. 
Then P and P ' may be considered as probability measures on the 
cr-algebras 2 and 2 ; consisting of all subsets of E and El respectively. 
Let 2 0 = { 0 , E} and 20 ' = { 0 , E' ) , where 0 is the empty set. 

THEOREM. If there exists a well ordered set D and a sequence \VLu on} 
such that 2 and 2 ' are [D, {ll{, en}] decompositions of So and So7 

respectively then the two Bernoulli schemes are isomorphic. 

The proof of the theorem will be given elsewhere, together with 
some applications of the theorem. 
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