fies (F) with $\{(A_1, B_1), \dots, (A_k, B_k)\}$ as a class of order-pairs. The 2k+1 integers k^2, \dots, k^2+2k are reversed by ρ , but two of them must fall in the same set A_i . This is a contradiction.

Therefore G is a proper subgroup of S_{∞} .

HARVARD UNIVERSITY

ON THE ISOMORPHISM PROBLEM FOR BERNOULLI SCHEMES

BY J. R. BLUM¹ AND D. L. HANSON² Communicated by J. L. Doob, November 27, 1962

1. DEFINITION 1. A Bernoulli scheme $(E, \Omega, \mathfrak{F}, P, T)$ is a probability space together with a transformation T, where

(i) $E = \{1, \dots, n\}$ for some positive integer n, or $E = \{1, 2, \dots\}$,

(ii) $\Omega = \{ \omega = (\cdots, \omega_{-1}, \omega_0, \omega_1, \cdots) | \omega_i \in E \text{ for all } i \},$

(iii) \mathfrak{F} is the smallest σ -algebra containing all sets $A_i^k = \{\omega | \omega_i = k\}$, (iv) $q_k > 0$ is defined for $k \in \mathbb{E}$ with $\sum_{k \in \mathbb{E}} q_k = 1$, P is the product measure on \mathfrak{F} defined by $P\{A_i^k\} = q_k$ for all i,

(v) T is the shift transformation defined on Ω , i.e., $T\omega = \omega'$ if and only if $\omega'_i = \omega_{i+1}$ for all *i*.

We shall sometimes refer to a Bernoulli scheme as a (q_1, \dots, q_n) scheme or a (q_1, q_2, \dots) -scheme depending upon whether $E = \{1, \dots, n\}$ or $E = \{1, 2, \dots\}$.

DEFINITION 2. Two Bernoulli schemes $(E, \Omega, \mathfrak{F}, P, T)$ and $(E', \Omega', \mathfrak{F}', P', T')$ are said to be *isomorphic modulo sets of measure* zero (or simply *isomorphic*) if there exist sets $D \in \mathfrak{F}, D' \in \mathfrak{F}'$ and a mapping $\phi: D \rightarrow D'$ such that

(i) TD = D,

(ii) $\phi: D \rightarrow D'$ is one-to-one and onto,

(iii) $\phi(T\omega) = T'(\phi\omega)$ for all $\omega \in D$,

(iv) if $A \subset D$ then $A \in \mathfrak{F}$ if and only if $\phi A \in \mathfrak{F}'$,

(v) if $A \subset D$ and $A \in \mathfrak{F}$ then $P(A) = P'(\phi A)$,

(vi) P(D) = 1.

DEFINITION 3. The *entropy* of a (q_1, \dots, q_n) -scheme $[(q_1, q_2, \dots)$ -scheme] is given by

¹ Research supported by the National Science Foundation, Grant NSF G-21219.

^{*} Research done under the auspices of the United States Atomic Energy Commission.

$$h = -\sum_{i} q_{i} \log q_{i}.$$

For a detailed discussion of entropy see, e.g., Halmos [1]. It is well known that entropy is an invariant with respect to isomorphism, i.e., any two isomorphic Bernoulli schemes have the same entropy. It is not known whether entropy is a complete invariant, that is, whether two Bernoulli schemes with the same entropy are isomorphic.

In this note we state a theorem which gives conditions under which two Bernoulli schemes are isomorphic. This generalizes results due to Meshalkin [2]. Below is a sketch of Meshalkin's work.

2. Consider a (q_1, \dots, q_n) -scheme and a (p_1, \dots, p_m) -scheme. Let p be a positive integer, let k_1, \dots, k_m be non-negative integers, and let $M = \sum_{\alpha} k_{\alpha} p_{\alpha}$. Meshalkin calls the (p_1, \dots, p_m) -scheme a (p, M)-factor scheme of the (q_1, \dots, q_n) -scheme provided there exist disjoint subsets I_1, \dots, I_m of $\{1, \dots, n\}$ such that

(i) $i \in I_{\alpha}, j \in I_{\alpha}$ implies $q_i = q_j, \alpha = 1, \cdots, m$,

(ii) $p_{\alpha} = \sum_{i \in I_{\alpha}} q_i = p^{k_{\alpha}} q_j$ for $j \in I_{\alpha}, \alpha = 1, \cdots, m$.

THEOREM (MESHALKIN). Consider a (q_1, \dots, q_n) -scheme with entropy h. Then

(i) any of its (p, M)-factor schemes has entropy $h - M \log p$,

(ii) for fixed p and M any two (p, M)-factor schemes are isomorphic.

COROLLARY. A (q_1, \dots, q_n) -scheme and a (p_1, \dots, p_m) -scheme are isomorphic provided

(i) they have equal entropy, and

(ii) there exist a positive integer p and non-negative integers k_1, \dots, k_n , r_1, \dots, r_m such that for all i and j with $1 \le i \le n, 1 \le j \le m$ the equations $q_i = p^{-k_i}$ and $p_j = p^{-r_j}$ hold.

3. DEFINITION 4. Let (Ω, \mathfrak{F}) be a measurable space. A maximal partition of (Ω, \mathfrak{F}) is a partition of Ω into measurable disjoint sets such that every measurable subset of Ω is the union of sets in the partition.

DEFINITION 5. Let *E* be as above and let Σ be the σ -algebra of all subsets of *E*. Let *P* be a probability measure defined on Σ which assigns positive probability to each nonempty subset of *E*. Let $\Sigma_0 \subset \Sigma_1 \subset \Sigma$ be σ -algebras, let $\Pi = (p_1, p_2, \cdots)$ be a finite or infinite sequence of positive numbers with $\Sigma p_i = 1$, and let $0 < \alpha \leq 1$. Σ_1 is a simple decomposition of Σ_0 of weight α with respect to Π if there exist $A_1, A_2, \cdots; B_1, B_2, \cdots; C_1, C_2, \cdots$ all subsets of *E* such that (i) $\bigcup_i B_i = \bigcup_i C_i = B$ and $P(B) = \alpha$,

(ii) $\{A_1, A_2, \cdots; B_1, B_2, \cdots\}$ is a maximal partition of (E, Σ_0) ,

[March

(iii) $\{A_1, A_2, \cdots; B_1C_1, B_1C_2, \cdots; B_2C_1, B_2C_2, \cdots; \cdots\}$ is a maximal partition of (E, Σ_1) ,

(iv) $P\{B_iC_j\}/P(B_i) = p_j$ for all i and j.

We shall refer to B as the base of the decomposition, and to C_i as the *ith compartment* of the decomposition.

DEFINITION 6. Σ_1 is a decomposition of Σ_0 of weight α with respect to Π if there exists a finite or infinite sequence of triples $\{(\Sigma^i, B^i, \beta^i)\}, i=1, 2, \cdots$, with Σ^i a σ -algebra of subsets of E, B^i a subset of E, and β^i a positive number for each i such that

(i) Σ^i is a simple decomposition of Σ^{i-1} of weight β^i and base B^i with respect to Π ($\Sigma^0 = \Sigma_0$),

(ii) $B^i \subset B^{i-1}$ for $i \ge 2$,

(iii) $\sum_i \beta^i = \alpha < \infty$,

(iv) Σ_1 is the smallest σ -algebra containing each Σ^i .

Let D be a finite or denumerably infinite well ordered set (ordered by \ll) with initial element i_1 .

DEFINITION 7. Σ is a $[D, {\Pi_i, \alpha_i}]$ decomposition of Σ_0 if for each $i \in D$ there exist sub- σ -algebras α_i and α_i of Σ such that

(i) α_i is a decomposition of α_i of weight α_i with respect to \prod_i ,

(ii) \mathfrak{B}_i is the smallest σ -algebra containing each \mathfrak{A}_j and $j \ll i$,

(iii) Σ is the smallest σ -algebra containing each α_i ,

(iv) $\Sigma_0 = \beta_{i_1}$,

(v) each $e \in E$ is in only a finite number of compartments of simple decompositions.

Now let $(E, \Omega, \mathfrak{F}, P, T)$ and $(E', \Omega', \mathfrak{F}', P', T')$ be Bernoulli schemes. Then P and P' may be considered as probability measures on the σ -algebras Σ and Σ' consisting of all subsets of E and E' respectively. Let $\Sigma_0 = \{ \emptyset, E \}$ and $\Sigma'_{d} = \{ \emptyset, E' \}$, where \emptyset is the empty set.

THEOREM. If there exists a well ordered set D and a sequence $\{\Pi_i, \alpha_i\}$ such that Σ and Σ' are $[D, \{\Pi_i, \alpha_i\}]$ decompositions of Σ_0 and Σ'_0 respectively then the two Bernoulli schemes are isomorphic.

The proof of the theorem will be given elsewhere, together with some applications of the theorem.

References

1. P. R. Halmos, *Entropy in ergodic theory*, mimeographed notes, University of Chicago, Chicago, Ill., 1959.

2. L. D. Meshalkin, A case of isomorphism of Bernoulli schemes, Dokl. Akad. Nauk SSSR 128 (1959), 31-44. (Russian)

UNIVERSITY OF NEW MEXICO AND SANDIA CORPORATION