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1. Introduction. Let A =||a(i, /)| be an 7 Xs matrix with real en-
tries. Consider the game in which nature picks a column, j, the ex-
perimeter a row, ¢, and the experimenter is paid a sum a(z, j) (pos-
sibly negative). The game is to be repeated countably many times,
with the restriction that nature must select a sequence with averages.
That is, foreach j, j=1, - + -, s, the frequency with which the column
j is chosen in the first # plays, ¢;(n), converges, as n— », to some g;.

Hannan [2] has exhibited a mixed strategy for the experimenter
such that, for every sequence of nature with frequencies g¢;, the aver-
age expected payoff will converge to M =max; ) ., a(4, j)g;. Black-
well [1] has exhibited a strategy such that, for every sequence of na-
ture with frequencies g;, limy.., (1/N) 2_¥_, P,= M with probability
one, where P, denotes the payoff at time # under the chosen mixed
strategy.

We here exhibit a class of pure strategies under which the averages
(1/N)3_¥_, P, converge to M for every allowable sequence of nature.
(By a pure strategy we mean a function f( { X, }) = {y,.} where {x,,} isa
sequenceof elementsof {1, - - -, s} and {y,} is a sequence of elements
of {1, I r} with y, constant on {xl, s ,x,,_l} cylinders. In brief,
the experimenter’s choice at time # is a function of nature’s choices
attimes 1, 2, - - -, #—1.) Our result insures that, without the neces-
sity of mixed strategies by the experimenter, but with a suitably
chosen pure strategy, his average payoff will converge to the mini-
max payoff if nature chooses a minimax mixed strategy and, more-
over, will take full advantage of any weaker strategy on nature’s
part.

2. Example. Let nature select a sequence of zeros and ones with
a density, d, of ones. The experimenter, after trial #, having observed
the past, guesses nature’s choice at time #-+41 and is awarded 1 or 0
units according as he is right or wrong; i.e., the payoff matrix is
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A strategy “succeeds” when its average payoff approaches
max(d, 1—d). The strategy of always guessing 1 fails when d <3%;
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the strategy of guessing, at time #-1, the majority up to time #
(with ties decided somehow) fails against some sequences with d=1%.
One successful strategy is to guess, for all # such that 2{<n <2+,
the majority up to time 2% The theorem below generalizes this
scheme to arbitrary finite payoff matrices.

3. Main result.

TuEOREM. Let A =||a(i, j)|| be an r Xs matrix of real numbers. Let
S= {1, ce e, s} and let {x¢|i=1, 2, - } be a sequence of elements of
S such that if Q;(m, n) =crd {x:|xi=j, m<iSn} then

(1) lim QJ'(O) ”) —

n— 0 n

VED

Let {mi|k=1, 2, - - - } be an increasing sequence of positive integers
such that ni=1 and such that lim infy, nga/ne>1. Given k, let i(ni) be
the least integer i which maximizes Y 4n; a(i, 1)Q;(0, ns). Define y1=1,
and, if ny, <n =g, let yo=1(ny). Then

1 X~ 8
(2) lim — E a(Yny %) =M = max E a(i, 7)g;.
Now ne=l * Jeal

Lemma 1. Let {a:}, {bkgk=1, 2, « -, be given, with by>0 for all
k. Let An= D 2y @y, Bu= 2 2.1 by. Then:

(@) If limg.e By, = ®©, and if limp., ar/be = K < o, then
limy. Au/Ba=K.

(b) If lim supr Bi/bi< o, and if limg., A,/B.=K<x, then
limk,w ak/bk =K.

LEMMA 2. Let {bk}, k=1,2, .- - be given, with by>0 for all k, such
that B,— o, and let f(n) be a real-valued function of n. Given n> B,
select k="Fk(n) such that By <Bpy1<n < Biys. Then:

(a) If limg., (f(n) —f(Bk)) (ﬂ _Bk)—l =limpm., f(Bm)/-Bm=K <,
then lim,., f(n)/n=K.

(b) If lim sups.e, Br/br< o, and if lim,.,f(n)/n=K <, then
lima.o (f(n) —f(Br))(n—By)~'=K.

We omit the proofs of the lemmas.

PRrOOF OF THE THEOREM. The proof is divided into two parts.

Part 1. We show limj., (1/2) 2", a(ynx.) = M. Since
Z:‘:-I a(ymxn) = a’(lyxl) + Z?:l:.l Z;—l a(i(nl)yj)Qi(nlvnl+l)) it
suffices, by Lemma 1(a) to show that

3) lim 1 2 a(i(m-1), ))Qi(m—1, m) = M.

b g — Wp—1 jel
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But, by (1) and Lemma 1(b), for each j,
Qi(m—1, mi) (e — me—1)™t = Q;(0, mp—1) (1) ™! + €;(k),

where limy,, €;(k) =0. Therefore, it suffices to prove:

@ lim —— 37 aGms), QA0, ms) = M

koo i1 jmil

This is immediate from (1) and from the continuity of the function

F(z, -+, %)= max Z a(i, 7)z;.

% jem1
PART 2. We show (2). If 5 <trpp1 <7 Stpya,

n

k 8
2: a(yt" %) = a(l, %1) + Z E a(i(”l),j)Qi(”b Mig1)

f=l lam] joul
+ 2 a(i(mr41), 1) Qs(tsr, )5
J=1
hence, by Lemma 2(a), it suffices to show

(5) '}Ln; p— 2} {a(i(ms), ))Qi(nry Mrs1) +a(E(#r11), ) Qimiss, m) } = M.
But
Qi(Mr41, m) _ QOilm, m) Qi M)
n — N n — N n — Ny
_ Qi(0, nx41) + 5,(8) — Myl — Mg { Qi(0, m1) Fny (k)} ,
Pgt1 n — Ny k41

where limg., 8;() =0 by Lemma 2(b) and lim.,, 7;(k) =0 by Lemma
1(b). Since, also,

Qi(nry Mit1) _ Mt = { Qi(0, 1)
n — my n—

+rm},

where limy., {;(k) =0, we have reduced the problem to showing

that:
lim I:?L Z {a("(”k); .7) QJ'(O nk) - a(i(n,H.l), j) ————Qj(o’ ”k+l)}

n—w N = Mg el Mr+1

Qa( Npt1) ]

(6)

+ Z a(i(mey), §) ———— M.
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This follows from the continuity of F, as before. The proof of the
theorem is complete.
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1. Introduction. Let X and Y be differentiable manifolds and @ a
space of mappings from X to Y. A common problem in differential
topology is to approximate a mapping in @ by another in @ which is
transversal to a given submanifold W Y. Thus if Gx,w is the sub-
space of mappings transversal to W it is important to know if Gx,w
is dense in @. Some famous examples are the Whitney immersion and
embedding theorems [8] and the Thom transversality theorem [4;7].
In the next section we give sufficient conditions for density in
case @ is a Banach manifold. The proof of the density theorem is
indicated in the third section, and in the final section the Thom
transversality theorem is obtained as a corollary.

2. Density theorems. Throughout this section X will be a mani-
fold with boundary, ¥ and Z manifolds, W C Y a submanifold (W, 7,
Z without boundary) all of class C", =1, and modelled on Banach
spaces (see [3] for definitions).

2.1. DEFINITION. A C" mapping f: X—Y is transversal to W at a
point xEX iff either f(x) EW, or f(x) =w&EW and there exists a
neighborhood U of x€X and a local chart (V, ¢) at w& Y such that

W:V—oEXF.VNW—EXO,

m oy is a diffeomorphism of VMW onto an open set of E, and
moYof| U is a submersion [3, p. 20], where m: EXF—E and

1 This work has been partially supported by the Office of Naval Research under
contract Nonr(G)-00098-62 and the National Science Foundation under grant
G19136.



