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1. Introduction. Let i4=||a(*\ j)\\ be an rXs matrix with real en­
tries. Consider the game in which nature picks a column, j , the ex-
perimeter a row, i, and the experimenter is paid a sum a(i, j) (pos­
sibly negative). The game is to be repeated countably many times, 
with the restriction that nature must select a sequence with averages. 
That is, for each j , j = 1, • • • , s, the frequency with which the column 
j is chosen in the first n plays, <?y(w), converges, as n—•»<*>, to some q$. 

Hannan [2] has exhibited a mixed strategy for the experimenter 
such that , for every sequence of nature with frequencies q$, the aver­
age expected payoff will converge to M = max» X X i a(iiJ)Qs* Black-
well [ l ] has exhibited a strategy such that, for every sequence of na­
ture with frequencies q3; lim^oo (1/iV) XiiLi Pn = M with probability 
one, where Pn denotes the payoff at time n under the chosen mixed 
strategy. 

We here exhibit a class of pure strategies under which the averages 
(1/iV) X ^ - i Pn converge to M for every allowable sequence of nature. 
(By a pure strategy we mean a function ƒ( {xn} ) = {yn} where {xn} is a 
sequence of elements of {l, • • • , s} and {yn} is a sequence of elements 
of {l , • • • , r} with yn constant on {#! . , • • • ,xn-i} cylinders. In brief, 
the experimenter's choice at time n is a function of nature's choices 
at times 1,2, • • • , » — 1.) Our result insures that, without the neces­
sity of mixed strategies by the experimenter, but with a suitably 
chosen pure strategy, his average payoff will converge to the mini-
max payoff if nature chooses a minimax mixed strategy and, more­
over, will take full advantage of any weaker strategy on nature's 
part. 

2. Example. Let nature select a sequence of zeros and ones with 
a density, d, of ones. The experimenter, after trial n, having observed 
the past, guesses nature's choice at time n + 1 and is awarded 1 or 0 
units according as he is right or wrong; i.e., the payoff matrix is 

II 1 0 || 

II 0 1 1 ' 
A strategy "succeeds" when its average payoff approaches 
max(d, 1—d). The strategy of always guessing 1 fails when d<\\ 
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the strategy of guessing, at time n+1, the majority up to time n 
(with ties decided somehow) fails against some sequences with d = §. 
One successful strategy is to guess, for all n such that 2i<n^*2i+1, 
the majority up to time 2\ The theorem below generalizes this 
scheme to arbitrary finite payoff matrices. 

3. Main result. 

THEOREM. Let A = \\a(i, j)\\ be an rXs matrix of real numbers. Let 
5 = { l , • • • , s} andlet {#»-|i = l, 2, • • • } be a sequence of elements of 
S such that if Qj{m, w)=crd {xi\xi=j, m<i^n} then 

(1) hm = qj. 
n-*» n 

Let {nk\k = lf 2, • • • } be an increasing sequence of positive integers 
such that ni=l and such that lim inf* nk+i/nk>\. Given k> let i(nk) be 
the least integer i which maximizes ]C?-i a(i> J)Qs(fii n^)* Define 3/1 = 1, 
and, if nk<n?znk+i, let yn~i(yik)* Then 

I N 8 
(2) lim — £ ) a(yn, xn) = M = max ]F) a(iyj)qj. 

LEMMA 1. Let {ak}> {bk\, fe = l, 2, • • • , be given, with bk>0for all 
k. Let An= XXi ah, 5n= 2LXX

 b*- Then: 

(a) If limWH>00 JBW = 00, and if Hm/u*, ak/bk — K < 00, then 
lim^oo An/Bn = K. 

(b) If lim sup* Bk/bk<*>, and if l i m , ^ An/Bn = K< 00, then 
lim^eo ak/bk = K. 

LEMMA 2. Let {bk}, k = 1, 2, • • • 6e gwew, w i ^ bk>0for all k, such 
that J3w-->oo, and let f(n) be a real-valued function of n. Given n>B%, 
select k = k(n) such that Bk <Bk+i <n^ Bk+2. Then : 

(a) If l i n w (f (n) - f (Bk)) (n ~ Bk)~
l = lim„^„ f (B„d/Bm = K< co, 

then lining ƒ (n) /n = K. 
(b) If lim sup/u«> Bk/bk < <*>, and if Y\mn^f{n)/n — K< 00, ^ew 

H m ^ (f(n)-f(Bk))(n-Bk)~i = K. 

We omit the proofs of the lemmas. 
PROOF OF THE THEOREM. The proof is divided into two parts. 
PART 1. We show lim^oo (1/»*) X)n-i a(yn,Xn) = -M". Since 

]Cui0(y„,*„) = a(l,aci) + 2 ? - i Z)J-ia(*(»0,i)Qy(»ii»i+i)» it 
suffices, by Lemma 1(a) to show that 

1 * 
(3) lim X) a(i(nk-i),j)Qj(nk-h nk) = M. 
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But, by (1) and Lemma 1(b), for each j , 

Qi(nk-i, nk){nk — nk-i)~
l = Q;(0, f^-iX^-i)-1 + ej(k), 

where Hm/u* ej(k) = 0. Therefore, it suffices to prove: 

1 * 
(4) lim ]£ 0(*(»*-O>./)GJ(O, »*-i) = M-

This is immediate from (1) and from the continuity of the function 
s 

F(zh • • • , z8) = max ]£ a(h j)*/. 
* i - i 

PART 2. We show (2). If nk<nk+i<n^nk+2, 
n h s 

t - i z-i y- i 

+ X a(i(»*+i)>i)0/(»*+i> »); 

hence, by Lemma 2(a), it suffices to show 

1 « 
(5) lim X) {a(Knk),j)Q,{nk, nk+i)+a(i(m+i)J)Qj(nk+i, n)} «J£. 

But 

Qj(nk+i, n) Qj(nk, n) Qj(nk, nk+1) 

n — nk n — nk n — nk 

& ( 0 , «jb+i) w&+i - if* / &(0> ^ A + I ) 

nk+i n — nk I nk+i 

where limjuoo 8y(fe) =0 by Lemma 2(b) and Huizoo rjj(k) = 0 by Lemma 
1(b). Since, also, 

Qj(m, nk+1) _ nk+i — nk( Qj(0, nk) 
n — nk n — nk \ nk tm }• 

where lim ô© Çj(k) = 0, we have reduced the problem to showing 
that: 

r r m+i -nh*( Qj(0, *») Öi(0, nk+1) \ 
hm LsaW»*)^) a(t(nk+i),j) > 

N »->» L n — nk y - i l w& Wjb+i ; 
(6) 

- 1 tlk+l J 
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This follows from the continuity of F, as before. The proof of the 
theorem is complete. 
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1. Introduction. Let X and F be differentiate manifolds and a a 
space of mappings from X to F. A common problem in differential 
topology is to approximate a mapping in Cfc by another in & which is 
transversal to a given submanifold WC.Y. Thus if dx,w is the sub-
space of mappings transversal to W it is important to know if dx,w 
is dense in <$. Some famous examples are the Whitney immersion and 
embedding theorems [8] and the Thorn transversality theorem [4; 7] . 
In the next section we give sufficient conditions for density in 
case ft is a Banach manifold. The proof of the density theorem is 
indicated in the third section, and in the final section the Thorn 
transversality theorem is obtained as a corollary. 

2. Density theorems. Throughout this section X will be a mani­
fold with boundary, F and Z manifolds, W(Z F a submanifold (W, Y, 
Z without boundary) all of class Cr, r è l , and modelled on Banach 
spaces (see [3] for definitions). 

2.1. DEFINITION. A Cr mapping ƒ :X—> Y is transversal to W at a 
point xÇLX iff either f(x)^W1 or f(x)~wÇiW and there exists a 
neighborhood U of # £ X and a local chart (F , \f/) at wG F such that 

rP:V-+EXF:Vr\W->EX0, 

TTiOxp is a diffeomorphism of VC\W onto an open set of E, and 
fl^oi/'o/l U is a submersion [3, p. 20], where TT\\ EXF—>E and 

1 This work has been partially supported by the Office of Naval Research under 
contract Nonr(G)-00098-62 and the National Science Foundation under grant 
G19136. 


