INFINITELY REPEATED MATRIX GAMES FOR WHICH PURE STRATEGIES SUFFICE

BY LEONARD E. BAUM, JOHN D. FERGUSON AND MELVIN KATZ

Communicated by C. B. Tompkins, February 25, 1963

1. Introduction. Let $A=\|a(i, j)\|$ be an $r \times s$ matrix with real entries. Consider the game in which nature picks a column, j, the experimeter a row, i, and the experimenter is paid a sum $a(i, j)$ (possibly negative). The game is to be repeated countably many times, with the restriction that nature must select a sequence with averages. That is, for each $j, j=1, \cdots, s$, the frequency with which the column j is chosen in the first n plays, $q_{j}(n)$, converges, as $n \rightarrow \infty$, to some q_{j}.

Hannan [2] has exhibited a mixed strategy for the experimenter such that, for every sequence of nature with frequencies q_{j}, the average expected payoff will converge to $M=\max _{i} \sum_{j=1}^{s} a(i, j) q_{j}$. Blackwell [1] has exhibited a strategy such that, for every sequence of nature with frequencies $q_{j}, \lim _{N \rightarrow \infty}(1 / N) \sum_{n=1}^{N} P_{n}=M$ with probability one, where P_{n} denotes the payoff at time n under the chosen mixed strategy.

We here exhibit a class of pure strategies under which the averages $(1 / N) \sum_{n=1}^{N} P_{n}$ converge to M for every allowable sequence of nature. (By a pure strategy we mean a function $f\left(\left\{x_{n}\right\}\right)=\left\{y_{n}\right\}$ where $\left\{x_{n}\right\}$ is a sequence of elements of $\{1, \cdots, s\}$ and $\left\{y_{n}\right\}$ is a sequence of elements of $\{1, \cdots, r\}$ with y_{n} constant on $\left\{x_{1}, \cdots, x_{n-1}\right\}$ cylinders. In brief, the experimenter's choice at time n is a function of nature's choices at times $1,2, \cdots, n-1$.) Our result insures that, without the necessity of mixed strategies by the experimenter, but with a suitably chosen pure strategy, his average payoff will converge to the minimax payoff if nature chooses a minimax mixed strategy and, moreover, will take full advantage of any weaker strategy on nature's part.
2. Example. Let nature select a sequence of zeros and ones with a density, d, of ones. The experimenter, after trial n, having observed the past, guesses nature's choice at time $n+1$ and is awarded 1 or 0 units according as he is right or wrong; i.e., the payoff matrix is

$$
\left\|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\| .
$$

A strategy "succeeds" when its average payoff approaches $\max (d, 1-d)$. The strategy of always guessing 1 fails when $d<\frac{1}{2}$;
the strategy of guessing, at time $n+1$, the majority up to time n (with ties decided somehow) fails against some sequences with $d=\frac{1}{2}$. One successful strategy is to guess, for all n such that $2^{i}<n \leqq 2^{i+1}$, the majority up to time 2^{i}. The theorem below generalizes this scheme to arbitrary finite payoff matrices.

3. Main result.

Theorem. Let $A=\|a(i, j)\|$ be an $r \times s$ matrix of real numbers. Let $S=\{1, \cdots, s\}$ and let $\left\{x_{i} \mid i=1,2, \cdots\right\}$ be a sequence of elements of S such that if $Q_{j}(m, n)=\operatorname{crd}\left\{x_{i} \mid x_{i}=j, m<i \leqq n\right\}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q_{j}(0, n)}{n}=q_{j} \tag{1}
\end{equation*}
$$

Let $\left\{n_{k} \mid k=1,2, \cdots\right\}$ be an increasing sequence of positive integers such that $n_{1}=1$ and such that $\lim \inf _{k} n_{k+1} / n_{k}>1$. Given k, let $i\left(n_{k}\right)$ be the least integer i which maximizes $\sum_{j=1}^{s} a(i, j) Q_{j}\left(0, n_{k}\right)$. Define $y_{1}=1$, and, if $n_{k}<n \leqq n_{k+1}$, let $y_{n}=i\left(n_{k}\right)$. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} a\left(y_{n}, x_{n}\right)=M=\max _{i} \sum_{j=1}^{S} a(i, j) q_{j} \tag{2}
\end{equation*}
$$

Lemma 1. Let $\left\{a_{k}\right\},\left\{b_{k}\right\}, k=1,2, \cdots$, be given, with $b_{k}>0$ for all k. Let $A_{n}=\sum_{k=1}^{n} a_{k}, B_{n}=\sum_{k=1}^{n} b_{k}$. Then:
(a) If $\lim _{n \rightarrow \infty} B_{n}=\infty$, and if $\lim _{k \rightarrow \infty} a_{k} / b_{k}=K<\infty$, then $\lim _{n \rightarrow \infty} A_{n} / B_{n}=K$.
(b) If $\lim \sup _{k} B_{k} / b_{k}<\infty$, and if $\lim _{n \rightarrow \infty} A_{n} / B_{n}=K<\infty$, then $\lim _{k \rightarrow \infty} a_{k} / b_{k}=K$.

Lemma 2. Let $\left\{b_{k}\right\}, k=1,2, \cdots$ be given, with $b_{k}>0$ for all k, such that $B_{n} \rightarrow \infty$, and let $f(n)$ be a real-valued function of n. Given $n>B_{2}$, select $k=k(n)$ such that $B_{k}<B_{k+1}<n \leqq B_{k+2}$. Then:
(a) If $\lim _{n \rightarrow \infty}\left(f(n)-f\left(B_{k}\right)\right)\left(n-B_{k}\right)^{-1}=\lim _{m \rightarrow \infty} f\left(B_{m}\right) / B_{m}=K<\infty$, then $\lim _{n \rightarrow \infty} f(n) / n=K$.
(b) If $\lim \sup _{k \rightarrow \infty} B_{k} / b_{k}<\infty$, and if $\lim _{n \rightarrow \infty} f(n) / n=K<\infty$, then $\lim _{n \rightarrow \infty}\left(f(n)-f\left(B_{k}\right)\right)\left(n-B_{k}\right)^{-1}=K$.

We omit the proofs of the lemmas.
Proof of the Theorem. The proof is divided into two parts.
Part 1. We show $\lim _{k \rightarrow \infty}\left(1 / n_{k}\right) \sum_{n=1}^{n_{k}} a\left(y_{n}, x_{n}\right)=M$. Since $\sum_{n=1}^{n_{k}} a\left(y_{n}, x_{n}\right)=a\left(1, x_{1}\right)+\sum_{l=1}^{k-1} \sum_{j=1}^{s} a\left(i\left(n_{l}\right), j\right) Q_{j}\left(n_{l}, n_{l+1}\right), \quad$ it suffices, by Lemma 1(a) to show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}-n_{k-1}} \sum_{j=1}^{s} a\left(i\left(n_{k-1}\right), j\right) Q_{j}\left(n_{k-1}, n_{k}\right)=M \tag{3}
\end{equation*}
$$

But, by (1) and Lemma 1(b), for each j,

$$
Q_{j}\left(n_{k-1}, n_{k}\right)\left(n_{k}-n_{k-1}\right)^{-1}=Q_{j}\left(0, n_{k-1}\right)\left(n_{k-1}\right)^{-1}+\epsilon_{j}(k),
$$

where $\lim _{k \rightarrow \infty} \epsilon_{j}(k)=0$. Therefore, it suffices to prove:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k-1}} \sum_{j=1}^{s} a\left(i\left(n_{k-1}\right), j\right) Q_{\jmath}\left(0, n_{k-1}\right)=M \tag{4}
\end{equation*}
$$

This is immediate from (1) and from the continuity of the function

$$
F\left(z_{1}, \cdots, z_{s}\right)=\max _{i} \sum_{j=1}^{8} a(i, j) z_{j}
$$

Part 2. We show (2). If $n_{k}<n_{k+1}<n \leqq n_{k+2}$,

$$
\begin{aligned}
\sum_{i=1}^{n} a\left(y_{i}, x_{i}\right)= & a\left(1, x_{1}\right)+\sum_{l=1}^{k} \sum_{j=1}^{\dot{j}} a\left(i\left(n_{l}\right), j\right) Q_{j}\left(n_{l}, n_{l+1}\right) \\
& +\sum_{j=1}^{\dot{s}} a\left(i\left(n_{k+1}\right), j\right) Q_{j}\left(n_{k+1}, n\right) ;
\end{aligned}
$$

hence, by Lemma 2(a), it suffices to show
(5) $\lim _{n \rightarrow \infty} \frac{1}{n-n_{k}} \sum_{j=1}^{s}\left\{a\left(i\left(n_{k}\right), j\right) Q_{j}\left(n_{k}, n_{k+1}\right)+a\left(i\left(n_{k+1}\right), j\right) Q_{j}\left(n_{k+1}, n\right)\right\}=M$.

But

$$
\begin{aligned}
\frac{Q_{j}\left(n_{k+1}, n\right)}{n-n_{k}} & =\frac{Q_{j}\left(n_{k}, n\right)}{n-n_{k}}-\frac{Q_{j}\left(n_{k}, n_{k+1}\right)}{n-n_{k}} \\
& =\frac{Q_{j}\left(0, n_{k+1}\right)}{n_{k+1}}+\delta_{j}(k)-\frac{n_{k+1}-n_{k}}{n-n_{k}}\left\{\frac{Q_{j}\left(0, n_{k+1}\right)}{n_{k+1}}+\eta_{j}(k)\right\}
\end{aligned}
$$

where $\lim _{k \rightarrow \infty} \delta_{j}(k)=0$ by Lemma 2(b) and $\lim _{k \rightarrow \infty} \eta_{j}(k)=0$ by Lemma 1(b). Since, also,

$$
\frac{Q_{j}\left(n_{k}, n_{k+1}\right)}{n-n_{k}}=\frac{n_{k+1}-n_{k}}{n-n_{k}}\left\{\frac{Q_{j}\left(0, n_{k}\right)}{n_{k}}+\zeta_{j}(k)\right\}
$$

where $\lim _{k \rightarrow \infty} \zeta_{j}(k)=0$, we have reduced the problem to showing that:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left[\frac{n_{k+1}-n_{k}}{n-n_{k}} \sum_{j=1}^{s}\left\{a\left(i\left(n_{k}\right), j\right) \frac{Q_{j}\left(0, n_{k}\right)}{n_{k}}-a\left(i\left(n_{k+1}\right), j\right) \frac{Q_{j}\left(0, n_{k+1}\right)}{n_{k+1}}\right\}\right. \tag{6}\\
\left.+\sum_{-1}^{s} a\left(i\left(n_{k+1}\right), j\right) \frac{Q_{j}\left(0, n_{k+1}\right)}{n_{k+1}}\right]=M
\end{array}
$$

This follows from the continuity of F, as before. The proof of the theorem is complete.

References

1. D. Blackwell, Controlled random walks, Proceedings of the International Congress of Mathematicians, Vol. III, pp. 336-338, North-Holland, Amsterdam, 1956.
2. J. Hannan, Approximation to Bayes risk in repeated play, Annals of Mathematics Studies No. 39, Princeton Univ. Press, Princeton, N. J., 1957, pp. 97-139.

Institute for Defense Analyses and University of Chicago

TRANSVERSALITY IN MANIFOLDS OF MAPPINGS ${ }^{1}$

BY RALPH ABRAHAM
Communicated by E. Spanier, January 14, 1963

1. Introduction. Let X and Y be differentiable manifolds and a a space of mappings from X to Y. A common problem in differential topology is to approximate a mapping in \mathbb{Q} by another in \mathbb{Q} which is transversal to a given submanifold $W \subset Y$. Thus if $\mathfrak{C}_{X, W}$ is the subspace of mappings transversal to W it is important to know if $a_{x, W}$ is dense in \mathbb{C}. Some famous examples are the Whitney immersion and embedding theorems [8] and the Thom transversality theorem [4;7]. In the next section we give sufficient conditions for density in case a is a Banach manifold. The proof of the density theorem is indicated in the third section, and in the final section the Thom transversality theorem is obtained as a corollary.
2. Density theorems. Throughout this section X will be a manifold with boundary, Y and Z manifolds, $W \subset Y$ a submanifold (W, Y, Z without boundary) all of class $C^{r}, r \geqq 1$, and modelled on Banach spaces (see [3] for definitions).
2.1. Definition. A C^{r} mapping $f: X \rightarrow Y$ is transversal to W at a point $x \in X$ iff either $f(x) \notin W$, or $f(x)=w \in W$ and there exists a neighborhood U of $x \in X$ and a local chart (V, ψ) at $w \in Y$ such that

$$
\psi: V \rightarrow E \times F: V \cap W \rightarrow E \times 0
$$

$\pi_{1} \circ \psi$ is a diffeomorphism of $V \cap W$ onto an open set of E, and $\pi_{2} \circ \psi \circ f \mid U$ is a submersion [3, p. 20], where $\pi_{1}: E \times F \rightarrow E$ and

[^0]
[^0]: ${ }^{1}$ This work has been partially supported by the Office of Naval Research under contract Nonr(G)-00098-62 and the National Science Foundation under grant G19136.

