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Let Rn be real w-dimensional Euclidean space. We call a domain 
DC.Rn a regular cone if it is nonempty, open, convex, and such that 
iîyED&ndy9*0then\y&Diora\l\>0but--y$:D. LetCn = Rn®iRn 

be the complexification of Rn. In Cn we define the wedge domain cor
responding to D by 

WD = {z => x + iy\ x Q Rn, y & D). 

The distinguished boundary of WD is the set {z = x+iy \ xÇzRn, y = 0 } , 
i.e., just Rn. 

In this paper we consider the following problem. Let ƒ be a real 
function on Rn satisfying certain regularity conditions. What are the 
conditions for the existence of a holomorphic function F on WD such 
that ƒ is the limit of Re -Fas the variable approaches the distinguished 
boundary? 

An answer to this question was given by Hans Lewy in [2] for 
the case where D is the positive quadrant in R2, i.e., where WD is 
equal to the product of two half planes. We are going to generalize 
Lewy's result in two directions: We shall consider the case of an 
arbitrary wedge domain, and we shall considerably relax the regular
ity conditions put on ƒ and F in [2], This additional generality is 
made possible by our method of proof, which consists in a systematic 
use of Fourier transform theory. 

We shall prove two theorems. Theorem 1 is the simplest formula
tion that can be proved by our method. Theorem 2 is of a more gen
eral nature (although it does not seem to imply Theorem 1). The 
basic idea of its proof is, however, the same, despite the technical 
complications involved by the Fourier transform theory of distribu
tions. 

We denote by L1 and L2 the spaces of integrable, resp. square-
integrable functions on Rn. As usual, we denote by H2(WD) the sub-
space of L2 consisting of the functions of form lim^o Fy where F(z) 
= F(x+iy) = Fy(x) is holomorphic in WD and {Fy\ y GD} is a bounded 
set in L2. Let D* be the dual cone of D, i.e., the subset of the dual 
space of Rn consisting of the elements a such that (a, x)>0 for all 
XEJD. I t is known (Bochner [l]) that fEH2(WD) if and only if ƒ is 
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the Fourier transform of a function in L2 whose support is contained 
in D*. 

I f /EL 1 and P is a hyperplane in Rn, we denote by fpf the integral 
of the restriction of ƒ to P. 

Now we can prove our first result. 

THEOREM 1. Let f be a real-valued function such that f(EL2r\Ll. ƒ is 
equal to the real part of a function in H2(WD) if and only if fpf= 0 for 
almost all those hyperplanes P which have an unbounded intersection 
with D. 

PROOF. The Fourier transform ƒ of ƒ is continuous and contained 
in L2. Denoting by P(a, b) the hyperplane {x\ (a, x) = b}, we have by 
Fubini's theorem, 

(1) f(a) = f e^f^dx = f db eih f f. 

The condition of the theorem is equivalent to saying that /p(«,6)/=0 
for almost all a(£Z)*U —25* and almost all b. 

Assume that the condition is satisfied. Then it follows from (1) 
that the support of ƒ is contained in Z)*VJ — D*. So /=0i+<jf>2, where 
0i and 02 are real continuous functions in L2 with support contained 
in D* and — D* respectively. Denoting by/i and ƒ2 the inverse Fourier 
transforms of 0i and 02, we have /= / i+ / 2 = Re(/i+/2) = Re(/i+/2). 
By the result of Bochner mentioned above it follows that /i+/2 
GH2(WD). 

Conversely, if FEH2(WD) and ƒ ==Re F~%(F+F) then we know 
that the support of ƒ is contained in Z)*VJ — D*. But (1) implies then 
that /p(«,fc)/=0 for all a(£25*U--Z)* and almost all b} finishing the 
proof of the theorem. 

One could easily prove the same result using linear submanifolds of 
Rn of some fixed dimension k (l^kt^n — l) instead of hyperplanes. 
In particular, the condition might involve the integral of the restric
tion of ƒ to straight lines. This remark applies also to the next theo
rem. For the sake of simplicity, however, we do not prove it in this 
general form; we are going to formulate it for the case of straight 
lines. 

To state the second theorem we need some definitions. Let a, 
xÇzRn. Slightly generalizing a definition of Lewy [2], we say that a 
function ƒ is [a0, x°]-continuously summable on Rn if the integral 

r ui - f "i/c**+*)i<» 
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exists and converges uniformly for almost all [a, x] in some neighbor
hood of [ce°, x0]. 

We denote by U the class of real-valued functions on Rn such that 
(i) ƒ is measurable and majorized by a polynomial almost every

where on Rn, 
(ii) ƒ is [a, x]-continuously summable for almost all a(~D, xÇzRn, 
(iii) for any compact set A C A ƒ[«,*]ƒ is bounded for almost all 

<*£A, x £ i ? n . 
By 3 we shall denote the class of holomorphic functions F on WD 

such that for any €>0, yÇîD, / 0 > 0 there exists a polynomial P such 
that \er*'F(x+ity)\ £P(x) for all t>t0 and all # £ £ " . 

For y&D we denote by Fy the function defined on Rn by Fy(x) 
= F(x+iy). If FG<8, then for all yED, F y £(S ' ) . (Here and in the 
following we make free use of the notations and terminology of 
Schwartz [3].) If ƒ£ (§ ' ) and lim^o Fy=f in ($'), we say that ƒ is the 
boundary distribution of F; if ƒ can be identified with a function, we 
call it the boundary function of F. We note here the fact that every 
f £ U is contained in (§')• 

THEOREM 2. A function / £ U is the boundary function of the real 
part of some function F £ 3 if and only if for almost every fixed a G P , 
ƒ[«,*]ƒ ^ almost everywhere equal to a constant Ca independent of x. 

PROOF. Assume that the condition is satisfied. For Af>0, a£jR n 

we define the measure wjf on Rn by 

ma (0) = I <l>(ta)dt 
J -M 

for all continuous <£ with compact support in Rn. We have w ^ £ ( 0 c ) , 
so the convolution ƒ * m„ exists and is in (S') for all a £ i ? n . We prove 
that liniM-ooZ * m^=Ca in (§')> uniformly for almost all a in any 
compact set A C ^ . 

For this we have to show that for any bounded set 5 C ( § ) , 

Af-+oo J Rn 

uniformly for all <t>GB and almost all a £ A . If B is bounded, there 
exists a rapidly decreasing function k on i£n such that |<K#)| <k(x) 
for all # £ i ? n [3, II , p. 91]. If AC-D is compact, by definition of the 
class U there exists a constant CA such that \Ca\ ^ CA for a £ A . Now, 
given any €>0 , we can choose a compact set K<ZRn such that 
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and l f o > 0 such that 

ƒ M 

f (ta + x)dt 
-M 

2CA I k(x)dx < — j 
J &K 2 

2(Max*)(MeslO 

for all M>MQ and almost all «GA, xÇîK. Now we have for all 
<j)£.B, M>MQ and almost all aGA, 

\(f*tna -CJ(4>)\ = f ( f /(to + *)# ~ Ca)<l>(x)dx S«, 

as can be seen at once by splitting the integral over Rn as /«w = / K 

Using some fundamental properties of the Fourier transform in 
(S') it follows that ƒ G (§0. «*?G(Oj#) and 

(2) lim ihaf = Caô 
m -+00 

in the (§0 -sense uniformly for almost all aGA. (We have denoted by 
ƒ, fha the Fourier transforms of/, m^.) It is also easy to compute ih% 
explicitly; it turns out that ifo%(x) =jDjif((a, #)), where D M is the 
classical Dirichlet kernel. 

Next we show that the support of ƒ is contained in D*\J — D*. Let 
[/ be a sphere in the complement of D*\J — D*. We can find a com
pact set AQD such that for any # G Z7 there exists a G int (A) satisfy
ing (a, x) = 0. Let w be a C°°-function whose support is A, and such 
that w(a) > 0 for all c*Gint(A). 

In the space (3)0 we have limM+*> ih%(x) = ô((a9 x)). Therefore the 
limit 

*&« (x)w(a)da 
A 

exists, and £ ( x ) > 0 for all xÇEU. By elementary properties of the 
Dirichlet kernel it is also easy to see that pÇzC™, and that the right-
hand side and all its derivatives converge to p and its corresponding 
derivatives uniformly for xÇzU. 

Now let <t> be any element of (S) with support contained in U. 
Defining the measure JU on Rn by dfx(a) — w(a)da, we have, by the 
above remarks, 
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ƒ' M 
i h a <t>dii = p<t> 

A 

in the sense of convergence in (S). I t follows that 

(3) lim ƒ ( f *ÎW(«) J = ƒ(#*). 

Applying the generalized Fubini theorem to the tensor product dis
tribution ƒ ®jit, we have 

(4) ƒ f ƒ iha^wj = ƒ Ma<t>)dfji(a). 

Now we note that the function a—>iha from A to (0M) is continuous; 
hence the function a-^m^J from A to (S') is continuous, and conse
quently a-J>(rfiaî)(<t>) IS continuous. Furthermore, 

lim (*?ƒ)(*) = lim /(*f *) = 0 

uniformly on A, by (2). I t follows that 

(5) lim I f(jh*4>)diA(a) = | lim /(*f*)rf/*(a) = 0. 

From (3), (4), (5) we have ƒ(£#) = 0 . Since 0 is arbitrary, and £(x) > 0 
on Z7, it follows that ƒ = 0 on U. Since Z7 was arbitrary we have proved 
that the support of ƒ is contained in D*U — Z5*. 

We can write/=<£i+$2, where </>i, $2 are in (S') and have their sup
port contained in D* and —D*, respectively. Let </> be the distribu
tion defined by #(0 =0i(O —fai — t) (where we use the function nota
tion as an abbreviation, to be interpreted in the obvious way), and 
for all yE.D let Fy be the Fourier transform of e~^'y><l>{t). By a result 
of J. Lions [4, Corollary to Proposition 8], it follows that the function 
F defined on WD by F(z) = F(x+iy) = Fv(x) is in the class 3 , and 
using the fact that the Fourier transform is a continuous map in (S') 
it follows easily that limVH.0 Re Fy=f. 

To prove the converse statement, let F££ and let / £ U be the 
boundary function of Re F=%(F+T?). By the result of Lions quoted 
above it follows that for all yÇzD, Fy is the Fourier transform of 
e-<'̂ ><£, where <££(£>')> and the support of <£ is contained in Z>* 
KJ — D*. Since ƒ is the boundary function of Re T7, it follows, using 
the continuity of Fourier transforms, that <££(§') and <£=ƒ. Now ƒ 
also has its support contained in 25*U — 35*. 
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For almost all aÇzD, lim^oo m„ * ƒ exists by hypothesis. Therefore 
liniM-oo rtiaj also exists in (S'). The support of this limit, as can be 
easily seen, is the origin; therefore it is equal to a linear combination 
of derivatives of 5. By Fourier transformation it follows that 
liniM-oo ma * ƒ is a polynomial; by property (iii) of the class U it is 
also bounded, therefore it must be equal to a constant C«. This 
finishes the proof of the theorem. 
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