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Recently Moser has obtained a Harnack inequality for linear 
divergence structure equations with n>2 variables. In this note we 
indicate how a similar procedure can be used also for nonlinear equa­
tions; in fact the equations in question need not even satisfy the 
usual ellipticity conditions. As applications of our main result, we ob­
tain, among other things, an a priori estimate for the Holder continu­
ity of solutions and the general asymptotic behavior of positive solu­
tions at an infinite singularity. 

Consider specifically equations of the form 

(1) div A(x} u, ux) = B(x, u, ux), x = (#i, • • - , # » ) £ ! > , 

where D is a bounded open set in Euclidean w-space. In this equation 
A is a given vector function of x, u, ux, B is a given scalar function of 
the same variables, and 

,. A A dAi /du du\ 
div A = 2^t > u x = [ f • • • ; 1 . 

1 ÔXi \dXi dXn/ 

The structure of equation (1) is determined by the functions A(x,u,p) 
and B(x, u, p). We assume that they are measurable in x and continu­
ous in u and p, and that they satisfy inequalities of the form 

| A | ^ a | p I"-1 + b | u I*-1 + e, 

(2) \B\ £c\p\-* + d\u\-*+f, 

p>A ^ arl\ p\a - d\ u\« - g, 

for x £ D and all values of u and p. Here a, 1 <a<n, is a fixed ex­
ponent, a is a positive constant, and b through g are measurable 
functions on D in the respective Lebesgue classes 

(3) M S i » / ( a - l ) i C(ELn/a-t)] d,f, gG Ln/(a-€), 

e being some positive number less than or equal to one. [We can also 
treat the case a = n. The case a>n, moreover, is somewhat easier and 
can be handled by means of Morrey's lemma. For simplicity and 
brevity of presentation we shall here restrict consideration to the 
range 1 <a<n, as indicated above.] 

The generality of these assumptions requires that equation (1) be 
interpreted in a weak sense. Let u~u(x) be a function having strong 
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derivatives which are locally of class La over D, that is, uÇîH^D). 
Then u will be called a weak solution of (1) in D if 

(4) f (fa-A +<t>B)dx=- 0 

for any continuously differentiate function <£=*<£(#) with compact 
support in D. Obviously any function which satisfies (1) in the classi­
cal sense would also be a solution in the sense just defined, though of 
course not conversely. 

Before proceeding further it is worth indicating several classes of 
equations which fall into the general category above. Suppose first 
that 

Ai = aijpj + biU + eiy 

B = cjpj + du + f, (j summed), 

where aty = a^(x) obeys the ellipticity condition 

X-^2 ^ di&Zi ^ U2, X = const > 0, 

and the coefficients bi through ƒ fall into the Lebesgue classes 

bi, Ci, ei G Zw/(î-o ; d,fÇz Z,n/(2-«). 

One checks easily that the various conditions (2) are met with a = 2, 
for example 

p-A = atjPiPj + biPiU + eiPi 2: ( 2X) - 1 ! /> | 2 -X | i | 2 | « | 2 - X | e|2 

and both \b\2 and | e\2 are in Lw/(2_€) as required by (3). This case 
essentially coincides with the class of linear equations studied by 
Morrey in reference [ó]; moreover, when bi through ƒ are identically 
zero we have precisely the situation considered by Moser in [8]. As 
a second example, consider the variational problem 

(5) I F(x, u, ux)dx = Minimum, 
J D 

where the integrand F(x, u, p) is convex in p and subject to the con­
ditions 

F è cr1] p\° - d\ u\a - g, 

(6) | j F , | £o\p\~-* + b\u\*-l + e, 

\Fu\ £c\p\*~l + i\u\~-*+f. 

The coefficients in (6) are assumed to satisfy (3), and in addition we 
suppose that F(x, 0, 0)Gin/(«-o« The Euler equation for (5) has the 
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form (1) with A = FPf B = Fu. One checks that the various inequalities 
(2) are satisfied. Specifically, 

F(x, u} 0) = F(x, 0, 0) + I Fu(x, u, 0)du ^ d\ u\<* + g 
•f o 

so that , using the convexity of F} 

p-Fp à F(*, «, *) - F(*, «, 0) è o"1] p\* - (<* + J) I «|« - (g + f) . 

I t should be observed that conditions (6) are similar to those as­
sumed in the papers [4; 7], etc. 

As a final example, we note that certain equations which nominally 
do not fall into the category above, can in fact be considered as spe­
cial cases. In particular, suppose one replaces (2) by 

U | £a(\p\«-i+ I «I<-«/<• + *), 
(20 J B I ^ a( \p |«-* + I « J fr-*)'" + ƒ), 

where /* = (» —a)/n+e. For any giflm solution of (1) for this case, 
we may set 

b{%) = a I * Icœ-ixi-rt/M, *(*) = a I i^l1"", <*(*) = a | u\°<l-M*9 

and it is easily verified (since ux&Lai uGLan/(n-a)) that conditions 
(3) are in fact satisfied. Thus the conclusions of the following Theo­
rems 1 through 3 remain valid, with the exceptions that the coeffi­
cients ky K, etc. now depend also on the Wi norm of the solution. 

Now let Q(P} R) denote the cube of half-edge R and center P in 
Euclidean x-space. The main result of the paper is the following 

THEOREM 1. Let ube a {weak) solution of (1) in D. Suppose that u is 
positive in some cube Q(P, AR) contained in D. Then in Q(P, R) we 
have 

(7) max u ^ &(min u + k'),1 

where k and k' are constants depending only on the structure of equation 
(1). In particular 

* = *(a,»,€;aJ | j | | ,*«|H|,^ |d | | ) 

and 

k' = (IMI + ü'll/ll)1 '^» + (R<\\g\\)lla, 
1 Here max and min are to be interpreted as the essential maximum and the essen­

tial minimum. 
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the norms of the coefficients b through g being taken in the respective 
Lebesgue spaces (3). 

Theorem 1 is proved essentially by the method of reference [8], 
with strong use being made of the general Sobolev inequalities and 
the lemma of John and Nirenberg. The first step of the proof involves 
the substitutions ü = u+k', % — x/R, which reduces the theorem to the 
case when R = 1 and e=f=g = 0. We then introduce the test function 
<t> = rjaufi into (4) and proceed rather as in Moser's proof. [It should 
be observed that before this procedure can be applied it is necessary 
to know that u is bounded. However, a preliminary argument may 
be used to establish the following result: Let u be a weak solution of 
(1) in D. Then u is essentially bounded on any compact subset D' of D, 
the bound depending only on the structure of equation (1), the sets D 
and D', and the La norm of u over D.2] Complete details of the method 
will appear in a subsequent paper. The following result is an obvious 
consequence of Theorem 1. 

THEOREM 2. If u is a positive solution of (1) in D, and if D' is any 
compact set in D, then 

max u ^ K ( min u + K! ) 
D' \ D' / 

where K and Kf depend only on the structure of equation (1) and the do­
mains D, D'. 

Suppose now that e is in a more restrictive Lebesgue class than 
originally assumed, namely eGI«/( a - i -o (CXe^a:— 1). Then clearly 
k' ^ const Rt,a in (7), where the constant depends only on the norms 
of e> ƒ, and g and on the diameter of D. This being the case, it is easy 
to show that u must be Holder continuous, thus: 

THEOREM 3. Let u be a solution of (1) in D and let D' be a compact 
set in D. Then after suitable redefinition of u on a set of measure zero, u 
is Holder continuous on Df with coefficient and exponent depending only 
on the structure of equation (1), on the domains D and D', and on the La 

norm of u over D. 

A more refined application of Theorem 1 is found in the study of 
solutions having isolated singular points. For simplicity in the discus­
sion we shall consider only a special case of equation (1), namely 

2 This may be assumed finite. Otherwise we can replace D by a suitable sub-
domain D* with compact closure in D. 
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(8) div A(x, ux) = 0, x G A 

where \A\ Sa\p\a""1+eJ p - A^a"~l\p\a—g, and e and g are respec­
tively in jLn/(a_i_«) and Ln/(a_e). Moreover, we shall assume that equa­
tion (8) has the following additional properties: 

1. For all x £ D and all values of p and g, 

(9) (p-q)'U(x,p)-A(x,q))^0, 

with equality holding if and only if p = q. 
2. For smooth boundaries and smooth boundary data there exist 

continuously differentiable (weak) solutions of (8) taking on the given 
boundary values. 

3. Let T denote a spherical annulus in D. By assumption 2 there 
exists a solution v of (8) taking the boundary value zero on the outer 
circumference and m ^ O o n the inner circumference. Also, by virtue 
of (9) a weak maximum principle holds for the difference of any two 
solutions. Consequently, a t any point P in T the values v(P) increase 
monotonically with m. As the final assumption, we suppose that v(P) 
tends to infinity as m does. 

The structure noted above is obviously available in the case of 
linear equations. A more sophisticated situation where the assump­
tions can be verified occurs when A=A(p) is of class C2, 

I it I S f l d f l ^ + D, f-iifctf-1! # ! • -« . 
and the derivatives Aitk of A satisfy \i(p)%2 ûAitk(p)^kû'\2(p)^2

9 

where Xi and X2 are positive continuous functions and X2/Xi^ const. 
By applying the mean value theorem, it is easy to verify the relation 
(9). The existence theorem needed to justify the second assumption 
has been given by Gilbarg in two recent papers, [l ] and [2]. The final 
condition can be proved by standard comparison arguments. 

THEOREM 4. Let u be a continuous non-negative solution of (8) in the 
set D — {0}, and suppose that the preceding assumptions 1 through 3 
are satisfied. Then either u is uniformly Holder continuous in the neigh­
borhood ofO, or else there exist positive constants C and C such that the 
inequality 

(10) CrK^u£ CV, K = y 
a — 1 

holds in the neighborhood of 0. 

Tha t is, a solution with an isolated singularity either satisfies the 
maximum principle or (if it is bounded on one side) has precisely the 
order of growth r(«-»)/(«-« at the singularity. When (8) is linear, we 
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have a = 2 and the singularity is of order r2~w as is well known [5; 9] , 
A somewhat weaker version of Theorem 4 was given earlier by the 
writer [lO]. For linear equations of the form a,ijd2u/dxidxj = 0 there 
are corresponding isolated singularity theorems, requiring however 
some continuity of the coefficients, and not necessarily providing an 
explicit order of growth at the singularity [ l ; 3] . 

The proof of Theorem 4 is fairly detailed, and cannot be given here. 
We require in particular the preceding Harnack inequalities, a gen­
eralization of the capacitary potential techniques of [S] and the iso­
lated singularity theorem of reference [lO]. In addition, an important 
step in the argument uses the fact that the function h — mrK+m\ 
m, m' = constants, is a solution of the variational problem (5) for 

In conclusion, one may ask whether there exist any solutions of (8) 
having the asymptotic behavior (10) at an isolated singularity. Under 
the present general conditions we have been unable to establish this, 
but if somewhat stronger regularity conditions are placed on the func­
tion A (x, p) then the existence of such solutions can be obtained. 
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