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1. Let £2 be a finitely connected plane domain whose boundary, 
d£2, consists of the circles To, I \ , • • • , Tw. We assume Ty lies in the 
interior of T0 for j= 1, 2, • • • , n. Let A0 be the interior of T0 and let 
Ay be the exterior of Ty, j= 1, 2, • • • , n. We then have £2 = riyLoAy. 
Let iToo[^] be the collection of all bounded holomorphic functions in 
£2. We shall say that a set S of points of 0 is an interpolation set for £2 
if given a bounded complex valued function w on S there is ƒ £#oo [Œ] 
such tha t / (s ) = w(z) for all zÇ:S. If \zn) *öl is a sequence in 0, without 
limit points in 0, we write {JSW} =S0VJ5iU • • • U 5 n where the Sj are 
pairwise disjoint and where the only limit points of Sj lie in Ty, 
j = 0, 1, • • • , n. 

In the present note we sketch proofs for the following two theo
rems: 

THEOREM A. The sequence {zn} is an interpolation set for Q if and 
only if each Sj is an interpolation set for the disc Ay. 

THEOREM B. Let / i , /2, • • • , fm be functions in H^lQ,] such that 
| / i(*)| +|/2(3) I + • ' ' +1ƒ.»(*) I ^ S > 0 for all s G & Then there exist 

functions gi, g2, - - • ,g m £#oo[ö] such that figx+f2g2+ • • • +ƒ«•£»= 1. 

L. Carleson [2] has established Theorem B in case 0 is the open 
unit disc. He has also proved [ l ] that the sequence {£„}£.! is an 
interpolation sequence for the open unit disc if and only if there is a 
S > 0 such that 

n 
%i — %k 

1 ~ ZnZk 

>b 

for ft = 1, 2, 3, • • • . For a discussion and alternative proof see [3, pp. 
194-208]. 

2. Outline of the proof of Theorem A. Let Bj be the Blaschke 
product associated with the disc Ay and the set of points 5y, 
j = 0, • • • , n. Note that there is an 77>0 such that |-By(*)| >V for 

1 National Science Foundation Graduate Fellow. 

527 



528 E. L. STOUT [July 

Suppose now that Sj is an interpolation set for Ay, j = 0, • • • , n. 
Let w be a bounded function on S, and let /yEi2»[Ay] be such that 

ƒ,(«) = W(Z)/(5o(z) • • • Bi.1(z)Bm(z) • • • S„(z)) 

for all z£.Sy. Define 

F = foBiB2 • • • Bn + fiBoBi • • • JB„ + • • • + fnBoBi • • • Bn-\. 

Then ^ £ # „ [ 0 ] and F(z) =w(z) for all zES. 
Conversely, assume that {zn}^1 is an interpolation set for Q. If 

ƒ £ # » [ & ] we define ||/|| by 

(1) 11/11 = sup{ | / ( z ) | : z G f i } . 

A Banach space argument like that in [3, p. 196] shows that there 
is a constant M such that if w is a function on {zn} £m,1 with | w(z) \ ^ 1 
for all *G {*«}»-!, then there i s / G i l j Q ] with ||/|| ^ M a n d ƒ(*) = w(s), 
2G {#n} *«i- Given zkÇîSj, let 5jfc) be the Blaschke product associated 
with the disc Ay and the set S/ \{£A;}. Let /£.ffoo[Œ] be such that 
f(zn) = 0 for n^kjfizk) = 1 and such that ||/|| SM. The function 

g = f/(Bo • • • Bj-iBj Bj+i • • • J3„) 

is in i?oo[Q]. Since there is 5 > 0 such that |5*(s) | ^ 8 for all zÇzTp 
iy^jj we have that ||g|| ^ M / S n . In particular then \g{zk)\ ^M/ôn. 
This yields 

| dnM~1f(zk)/(Bo(zk) • • • Bj-tizaBHiiik) • • • £»(**)) | ^ | * j % ) | . 

Since ƒ(«*) = 1, and the product Bo • • • Bj-iBj+i • • • 5W is uniformly 
bounded away from zero on 5y, we have that 5 f ) f e ) ^ S 1 > 0 . This 
estimate is uniform in k, so 5y is an interpolation set for Ay. 

3. Outline of the proof of Theorem B. Observe that -ffoo[&] is a 
commutative Banach algebra with identity if it is given the norm 
defined by (1). Let 9Jt[Q] be the maximal ideal space of iïoofQ]; we 
regard 9JÎ [O] as the collection of all nonzero complex homomorphisms 
of üoo[K] with the weak* topology. Let 2fte[S2] be the collection of 
those homomorphisms <j>\ of the form </>\(J) ==/(X), X£Î2. It is known 
[3, p. 163] that to establish our result it suffices to prove 9Me[Q] dense 
in S»[Ö]. 

For j = 1, 2, • • • , n, let Jï° [Ay] be the closed subalgebra of iToo[Q] 
consisting of those ƒ which are restrictions to Q of functions in 
Hoo[Aj] which vanish at infinity. I t is known [4, p. 56] that if 
f£iïoo[û], then ƒ can be written in the form 
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(2) / = / o + / i + • • • + ƒ * , 

/oG^oo [Ao], fjÇzHn [Ay], 1 ^j. It is immediate that this decomposition 
is unique ; it yields 

(3) Hoofo] = tfjAo] e H1[AI] e • • • e #L[An], 

the direct sum being understood in the sense of Banach spaces. 
Following some ideas of I. J. Schark (see [3, p. 159, ff.]), we note 

that the function z is in iJoo[î2]. It gives rise to the function z on 
2ft [O] given by ê(<f>)=</>(z). We can prove that i maps 2ft [fl] onto 0 
and that i is one-to-one over Q. If a£ö£2, set 2fta= {<££2ft[Q]: 
t{<i>)—a}. A slight modification of the argument for the disc case 
shows that if ƒ S i ? » [Q], then ƒ is constant on 2ft« if and only if ƒ is 
continuously extensible to £2W{a} and that if ƒ is so extensible, then 

ƒ(*)=ƒ(«) for aii *ea»[o]. 
Suppose now that 0 is a multiplicative linear functional defined on 

iJoojAo] viewed as a subalgebra of -H«>[^] by the direct sum decom
position (3). Let <t>(z) £ 0 . Then </> admits a unique extension to an 
element of 2ft [Q]. This is clear since & maps 2ft [£2] onto £2 and is one-
to-one over Q. If a = <t>{z) lies in To, <t> also admits a unique extension 
to an element of 2ft [Q]. For uniqueness, suppose that <£* is an exten
sion of <j> to all of H„[Q]. For f&H„[Q], w r i t e / = / 0 + / i + • • • + ƒ » in 
accordance with (2). The linearity of <t>* implies that <£*(ƒ) = <£*(ƒ 0) 
+#*( / i ) + * * * +<£*(/n)- Since 0* is an extension of <£, and since, 
for j= 1, 2, • • • , w,/y is continuously extensible to flU {a}, it follows 
that $*(ƒ) =0( /o )+ / i (aO+ • * * +/n(«). This establishes the unique
ness of the extension. This choice of #* yields a multiplicative func
tional. To see this, suppose g£iïoo[û] and write g = go+gi + • • • +gn 

by (2). Then fg = 2î!*-o ƒ;&*• Since <£* is plainly linear, we need only 
show <t>*(fjgk) =0*(/y)0*(gjfc). If neither j nor k is zero,/yg^ is continu
ously extensible to Q U { a } , so we need only consider terms of the 
form fogk and fjg0. Suppose then that /G-ffoolAo], gÇzH»[Aj], jVO. 
Since <£*(g) =g(o0, we are finished if we can show 4>*(fg — g(a)f) = 0. 
Write 

jfe ~ #(«)ƒ = ko + h + • • • + hn 

in accordance with (2). Then hj is continuous at a for j= 1, • • • , w, 
and since fg — g(a)f is continuous at ce, it follows that ho must be 
continuous at a so that <t>{ho)=ho(a). Therefore <t>*(fg — g(pc)f) ==ho(a) 
+hi(a)+ - • • +hn(a)—0. We conclude that $* is multiplicative. 

If 0 is a multiplicative linear functional on ^ [ A o ] such that 
0(2) G Ty forjVO, our argument indicates that <j> admits many exten-
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sions to an element of 9K[Q]. If 0O&)£AO\O, then <f> admits no exten
sion. 

The same argument applies to Ai, • • • , Aw in place of A0. This also 
shows that every element of 9Jl[0] is determined by its action on the 
subalgebras Hoo[A0], # ° [A], • • , if° [An]. It now follows that 
9J?e[£2] is dense in 9K [0]. For suppose 0E9K[O], and suppose a = (j>(z) 
GT/fc. Let </>m be the restriction of </> to the subalgebra HojAy]. By 
Carleson's result for the disc, there is a point X£A& such that the 
point evaluation 0̂ fc) at X is near </>(fc) in the sense of the weak* topol
ogy in the maximal ideal space of Hoo[àk]. If X is near a, then XG&, 
and each of the point evaluations at X, <£x\ for j^kis near the point 
evaluation <$ in the maximal ideal space of if* [Ay]. But then the 
point evaluation $x£$fte[Œ] is near the homomorphism <j> in 9J?[ö]. 
Thus 9We[l2] is dense in 5Dt[0], and we have our result. 

4. We can relax our condition on the boundary of Q, as follows. Our 
results are plainly invariant under conformai mapping. It is known 
[5, p. 377] that every finitely connected domain with no nonde-
generate boundary components is conformally equivalent to a domain 
bounded by circles. Thus our results apply to this more general class 
of domains. 
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