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In the proof of the consistency of the Continuum Hypothesis and 
the Axiom of Choice with the other axioms of set theory, Gödel [ l ] 
introduced the notion of a constructible set and showed that the con
structible sets form a model for set theory. These sets are intuitively 
those which can be reached by means of a transfinite sequence of 
several simple operations. He then showed that the Axiom of Choice 
and Continuum Hypothesis held in the collection of constructible sets. 
If the original universe of sets is sufficiently rich in ordinal numbers, 
it will follow that every set is constructible, in which case we say that 
the Axiom of Constructibility is satisfied. This axiom implies the two 
axioms previously mentioned. However, from one point of view it 
may seem that this notion of constructibility does not intuitively cor
respond to what is meant by constructive since it may happen that 
all sets in the universe are constructive. In this paper we show that 
a more restricted notion of "construction" will yield a class of sets 
which form a minimal model for set theory. In this manner we prove 
the consistency of a stronger form of the Axiom of Constructibility. 
We observe that the idea of a minimal collection of objects satisfying 
certain axioms is well known in mathematics, for example, in group 
theory one often considers the subgroup generated by a collection of 
elements, and in measure theory we define the Borel sets as the small
est <r-algebra of sets containing the open sets. 

We shall work within the framework of Zermelo-Frankel set theory 
(denoted by Z-F set theory) ; the characteristic feature of this theory 
is that the axiom of substitution consists of a countable number of 
statements, one for each definable relation R(x, y), which say that if 
for some fixed set A and for all x in A there exists a unique y such that 
R(x>y) holds, then there exists a set B consisting of precisely those y. 
Since much of the proofs of the theorems we state follow quite closely 
the arguments of [ l ] , we shall be rather brief. 

Our main result is 

THEOREM 1. There exists a collection of sets which satisfy Z-F set 
theory and such that any other such collection contains a sub-collection 
isomorphic to it. 

Here, we mean that the G-relation is taken to be the usual one. By 
1 The author is a fellow of the Alfred P. Sloan Foundation. 
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a well-founded model for set theory we mean one for which there does 
not exist a sequence {an}, an in the model such that aw+i£#n. A well-
founded model is always isomorphic to a model of actual sets. We 
may thus restate Theorem 1 by saying that there is a model for Z-F 
theory which is contained in every well-founded model. A collection 
C of sets is called transitive if whenever # £ C and yÇix then y&C. 
It is clear that every collection C of sets is isomorphic (with respect 
to G) to a transitive collection C'. Namely, define <fi by transfinite in
duction on the rank of x for all x £ C , so that (f>(x) — \y\ ElsEC, zGx, 
<l>(z) —y}- With this remark, Theorem 1 follows from Theorem 3 be
low. 

Let To be any transitive collection of sets containing the set of all 
integers. For each ordinal a ^ 1 we define the set Ta by induction as 
follows : 

Set Ca = U/3<a T$. Then: 
(1) If x and y belong to C«, {x, y} belongs to Ta 

(2) UxeCa,z=\y 
(3) UxeCa, z={y 

Bu(yÇiuÇzx)} belongs to Ta. 
| y £ # i yÇzCa} belongs to Ta. 

(4) If R(a, b) is any condition on sets a, b constructed from the 
logical symbols and from sets in Cai and if for some fixed x in Ca, 
and all y in x, there exists a unique z in Ca, such that R(y, z) holds 
when all the quantifiers in R are restricted to Ca, then the set of all such 
zGTa. 

(5) Only the sets described in (1) through (4) belong to Ta. 
I t is easy to see that Ta are an increasing sequence of sets. 
We observe that this differs from Gödel's definition of constructible 

sets only in that we do not demand that Ca belong to Ta. 
The union M of all Ta for all ordinals a we call the minimal model 

generated by To. 

THEOREM 2. M is a model for Z-F set theory. 

PROOF. Precisely as in [ l ] . 

THEOREM 3. If M' is any transitive collection of sets such that ToQM' 
for which Z-F set theory holds, then M'^M. 

PROOF. For each ordinal a in ilf', denote by 7V and C« the sets 
formed within M' by precisely the same process as Ta and Ca are 
formed. It is clear that for a in M', Ta^Tl and Ca^CL Let M" 
denote the union of all C« for a&M'. Put 

2 = {a\Ca+1?*Ca}, 

2 ' = {a\aeM',Ca?*Ca+1}. 
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Both S and 2 ' are clearly initial segments of ordinals. We assert that 
2 C 2 ' . For, otherwise for some /3 in 2 , ]8 is the supremum of 2 ' , and 
hence Cp = M". Since M" is a model for Z-F set theory it follows that 
operations (1) through (4) form no new sets when applied to Cp and 
hence C/3+i = C ,̂ or j3£E2, a contradiction. Hence TaQM' for all a in 
2 and therefore M'~DM. 

THEOREM 4. If To is countable, so is M. 

PROOF. By the Skolem-Löwenheim Theorem there is a countable 
model of sets containing To, SO the theorem follows from Theorem 3. 

Let Mo denote the model M where from now on To is taken to be 
merely the integers and the set of all integers. Mo is then the minimal 
model referred to, and is contained in every transitive model of sets 
for Z-F theory. I t follows from the proof of Theorem 3, that 2 is con
tained in Mo and thus that in Mo, the following axiom holds: 

STRONG AXIOM OF CONSTRUCTIBILITY. For every set x, there exists 
an ordinal a and x £ TV 

We note that there clearly are systems in which the strong Axiom 
of Constructibility fails, namely any uncountable model. I t is also 
easy to see that the strong form implies the usual form of the Axiom 
of Constructibility. 

Finally, we add an application to the problem of the independence 
of the Axiom of Choice. 

THEOREM 5. Let R(x) be any condition constructed from the logical 
symbols. Then using Z-F set theory it is impossible to prove that the sets 
satisfying R(x) form a model for Z-F set theory and the negation of the 
Axiom of Choice (or even the negation of the Axiom of Constructibility). 

PROOF. If such a proof existed it would imply that the set of x in 
Mo satisfying R(x) in Mo would form such a model N. We may form 
the transitive model N', which is isomorphic to N and which is still 
a submodel of Mo. Since M0 is minimal, N' = Mo and so the Axiom of 
Constructibility holds in N. In Theorem S we allow the possibility 
that the proof that the axiom of substitution holds may involve a 
different proof for each one of the countable statements in that axiom. 

Theorem 5 shows that in some sense the problem of independence 
of the Axiom of Choice is more difficult than that of the consistency, 
since in the latter case the relation R(x) was taken to be that of con
structible sets and the proof that in this collection of sets the Axiom 
of Choice held required only Z-F theory. Of course, Theorem S does 
not preclude the construction of such a model by means of operations 
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going beyond Z-F theory, e.g. based on an enumeration of statements 
in Z-F theory and the truth or falsity thereof. 

I t is known [2] that no minimal model for analysis exists, i.e., a 
collection of sets of integers and satisfying the axioms of analysis 
which is contained in every other such collection. The difficulty 
would seem to be that there is no unique representation for ordinals 
in analysis corresponding to the standard representation in set theory. 
However, the above ideas may also be applied to analysis, and in this 
case one obtains the usual systems of ramified analysis, Aa* Precisely 
as above one can show that their union is a model for analysis. Since 
the construction may be carried out within a countable model for set 
theory, it is clear, as before, that it is a countable model. The fact 
that the Aa stop at a countable ordinal can in fact be proved in Z-F 
theory. Observe that the Aa certainly stop for Q: = Q>I, the first un
countable ordinal. (If we take coi to be the first uncountable ordinal in 
Mo we see immediately that the Aa definitely stop before the Ca do.) 
One can use the Skolem-Löwenheim argument to deduce that there 
is an increasing sequence of countable ordinals /3n, j3 = Lim/3n, such 
that in A$n and Ap all the true statements are still true in AuV From 
this it follows that any set of integers formed at A p is already identi
cal to a set formed at Apn for some n. Hence the process stops with 
Ap. 

It remains open to find a model for analysis which is minimal in 
some natural class of models. In this direction Mostowski [3] has 
introduced the notion of a /3-model, i.e., models in which the counta
ble ordinals correspond to true well-orderings of the integers. I t would 
be interesting to know whether in this class one can find a minimal 
model, and what the relation is with ramified analysis. 

I wish to thank Professor Georg Kreisel and Professor Solomon 
Feferman for many stimulating conversations. 
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