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1. Introduction. A random distribution f unction F is a measurable 
map from a probability space (Q, ff, Q) to the space A of distribution 
functions on the closed unit interval J, where A is endowed with its 
natural Borel <r-field, that is, the smallest cr-field containing the cus­
tomary weak* topology. It determines a prior probability measure 
P = QF~~1 in the space A. Of course, F is essentially the same as the 
stochastic process {Ft, O ^ ^ l } on (Q, ff, Q), where F,(«) =F(co)(*). 
Therefore, this note can be thought of as dealing with a certain class 
of random distribution functions, or a class of stochastic processes, 
or a class of prior probabilities. 

Which class? Practically any base probability \x on the Borel subsets 
of the unit square 5 determines a random distribution function F and 
so a prior probability PM in A, which will be described somewhat 
informally in §2, by explaining how to select a value of F, i.e., a dis­
tribution function F, at random. §§3, 4 and S describe some proper­
ties of PM. Proofs will be given elsewhere. For ease of exposition, we 
assume that ju concentrates on, that is, assigns probability 1 to, the 
interior of 5. 

2. The construction. To select a value F of F at random, begin by 
selecting a point (x, y) from the interior of S according to ju. The 
horizontal and vertical lines through (#, y) divide S into four rec­
tangles; consider the closed lower left rectangle L and the upper right 
one R. The unique (affine) transformation of the form (uy v) 
—>(aw+]8, yv + 8)> a and 7 positive, which maps S onto L carries ju 
into a probability juz, concentrated on L. The probability IXR is defined 
in a similar way. Now select a point (XL, y£) at random from the inte­
rior of L according to ixu and a point (XR, yR) at random from the 
interior of R according to /*#. As before, (XL, yi) determines four sub-
rectangles of L, and (XR, yR) determines four subrectangles of R. Con­
sider the lower left subrectangle LL in L, the upper right subrectangle 
RL in L, and the two analogous subrectangles LR and RR in R. The 
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construction may be continued by selecting one point at random from 
each of these four rectangles, according to the appropriate affine 
image of p, and so on. This procedure yields a nested decreasing se­
quence of closed sets, each being a finite union of closed rectangles: 
namely, 5, L\JR, LLKJRLKJLRSJRR, and so on. The intersection of 
these closed sets is a nonempty closed set which, with probability 1, 
is the graph of a distribution function. This function is taken as the 
random value F of F. 

With probability 1, F is continuous and strictly monotone, so 
that Pfx concentrates on the continuous strictly monotone distribution 
functions. Unless p concentrates on the main diagonal, F is almost 
certainly purely singular, so that Pu concentrates on the purely singu­
lar distribution functions. 

Three interesting choices for /x [cited below as examples (1), (2), 
(3)] are: (1) the uniform distribution on the vertical line segment 
x = l/2, O^y^l; (2) the uniform distribution on the horizontal line 
segment O ^ x ^ l , y =1/2; (3) the uniform distribution on S. 

3. The average distribution function. A probability P in A deter­
mines as usual an average distribution function Fp according to the 
relation 

FP(X) = f G(x)dP(G). 

Consider the mapping Tu of A into A defined by 

(T»F)x = Jo ƒ PF^j^da, dp) 

The average FPfl1 or Fu for short, satisfies the functional equation 
T»F=F. Since Tu is a uniformly strict contraction of the complete 
metric space A in the sup norm, TM has a unique fixed point, and if 
GGA, (Tu)

nG->Fu asn->oo. 
In example (1) of §2, Fu(x) =#, O ^ x ^ l ; while in examples (2) and 

(3), Fn(x) = 27T"1 sin""1 x112. Surprisingly, therefore, the base proba­
bilities /i of examples (1) and (2) yield different priors PM. It follows 
easily that the base probability of example (3) produces a third dis­
tinct prior. 

To generalize example (1) slightly, if /x concentrates on the vertical 
line segment x = r, O ^ y ^ l , and has mean (r, w), the equation T»F= F 
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takes the form 

F(x) = WF(—\ 0 | * ^ f, 

- w + (1 - W)F(^—\, rl£ xZ£ 1 

which, as shown in Chapter 6 of [2], has the unique solution 

F(%) = QÀQ7K*)], 

where the coin-tossing distribution function Qw may be defined as 
follows. Let {€/, 1 ^ j < oo } be independent random variables with 
the common distribution P(€y = 0 )=w, P(€y=l) = l — w; then QW is 
the distribution function of ]C£ i €y2""/. Since Qr is strictly monotone 
on / , its inverse function QT1 is also a distribution function on J. 

The mapping PM is the usual operator on probabilities associated 
with a discrete time Markov process having I for state space and the 
following transition mechanism : when at # £ I , select (af j8) at random 
from S according to jx and move to ax with probability ]8, or to 
x+a(\ — x) with probability 1 —/3. 

4. The uniqueness problem. In examples (1), (2), and (3), distinct 
base probabilities ya and 1x2 lead to distinct priors PMl and PM2. On the 
other hand, if fii and /x2 are distinct but concentrated on the main 
diagonal of 5, then PM1 and PM2 coincide, each assigning probability 1 
to the distribution function X, \(x)~xf O ^ x ^ l . We have found no 
other exceptions to the conjecture that 1x15*1x2 implies PMl5^PM2. This 
implication does hold when fxi and 1x2 are both concentrated on the 
same vertical line segment, say, # = 1 / 2 , O^y — 1 . As before, write 
(1/2, Wi) for the mean of /*»-. Then F^ = QWi1 and for Wi^ze^, it is well 
known from the strong law of large numbers that QWl and QW2 are 
mutually singular. I t follows easily that PM1 and P ^ are not only 
different but even mutually singular in the following strong sense. 
There exist two disjoint Borel subsets B\ and B2 of I (e.g., Bi may 
be taken as the set of binary irrationals whose binary expansion has 
Wi for limiting relative frequency of O's), such that PH is concentrated 
on the collection d of distribution functions, where F^d if and only 
if the probability in I determined by F concentrates on Bi. Obviously, 
d and d are disjoint Borel subsets of A. If wi = w2 but \x\?£\X2, such 
Bi do not exist; but PM1 and PM2 are still mutually singular in a fairly 
strong sense. Namely, there are disjoint Borel subsets d and d of A, 
such that P ^ concentrates on d, and having the further property: 
FiÇzCi implies that Pi and F2 are mutually singular. 
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5. Consistency. Let J00 be the space of sequences {%}, #y£J , 
j = 1, 2, • • • , and let <r(I°°) be its product or-field. Let %n(s) be the nth 
coordinate of s £ J00. If o*(A) denotes the Borel or-field in A, a probabil­
ity P on (A, o-(A)) determines a probability P on (A XI00, <r(A) Xo-(J°°)) 
by the relation 

P{AX [s\ Us) G Ah 1 S i ^ »]} - f f i l P|(^)<ZP(P) 

for ^4£Ö"(A) , Aj Borel in J; where \ F\ denotes the measure in i" 
determined by F. Let P * be a map from all w-tuples {#y, 1 èjèn} of 
elementsof J to probabilities on (A, o-(A)),sothatP*(£i(s), • • •,£«($)), 
as a function of s, is a version of the conditional distribution of F 
under P, given {&, 1 £ / £ * } . In other words, P * (&(*), • • • , &(*)) 
is "the" posterior distribution of F given {{y(s), l ^ i ^ w } . 

If GGA, let iGl00 denote the unique probability on (J00, ^(J00)) 
under which the {£n} are independent with common distribution 
function G. Since A is compact metrizable, the space of probabilities 
on (A, <r(A)) has a weak* topology, as part of the dual of the space of 
continuous functions on A. Write A0 for the set of all G G A satisfying 
the following condition: for | G| °°-almost all 5 G P°, 
•P*(?i(^)> • • • » £n00) converges to point mass at G, in the weak* 
topology, as n—*oo. Then Ao£(r(A), and, as noted by Doob in [ l ] , 
the forward martingale convergence theorem implies P(A0) = 1. But 
there is strong evidence that for most P , A0 is only of the first category 
[3, §5]. Here is a result in the other direction. If the base probability 
ix concentrates on a vertical line segment x = r, O ^ y ^ l , and assigns 
positive mass to every nondegenerate subinterval of that segment, 
then there exists a t least one choice of P* for which A0 = A; which, in 
the usual terminology, says that Bayes* estimates constructed from 
PM are consistent. 
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